2024 Air Quality Annual Status Report (ASR) In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management, as amended by the Environment Act 2021 Date: August 2024 | Information | Cumberland Council Details | |-------------------------|--| | Local Authority Officer | Mathew Proudfoot | | Demontraced | Environmental Health | | Department | Public Health and Protection Services | | Address | Civic Centre, Rickergate, Carlisle, CA3
8QG | | Telephone | 01228 817000 | | E-mail | environmentalhealth@carlisle.gov.uk | | Report Reference Number | ASR 24 | | Date | August 2024 | # **Executive Summary: Air Quality in Our Area** ## Air Quality in Cumberland Council Breathing in polluted air affects our health and costs the NHS and our society billions of pounds each year. Air pollution is recognised as a contributing factor in the onset of heart disease and cancer and can cause a range of health impacts, including effects on lung function, exacerbation of asthma, increases in hospital admissions and mortality. In the UK, it is estimated that the reduction in healthy life expectancy caused by air pollution is equivalent to 29,000 to 43,000 deaths a year¹. Air pollution particularly affects the most vulnerable in society, children, the elderly, and those with existing heart and lung conditions. Additionally, people living in less affluent areas are most exposed to dangerous levels of air pollution². Table ES 1 provides a brief explanation of the key pollutants relevant to Local Air Quality Management and the kind of activities they might arise from. **Table ES 1 - Description of Key Pollutants** | Pollutant | Description | |---|---| | Nitrogen
Dioxide (NO ₂) | Nitrogen dioxide is a gas which is generally emitted from high-
temperature combustion processes such as road transport or energy
generation. | | Sulphur
Dioxide (SO ₂) | Sulphur dioxide (SO ₂) is a corrosive gas which is predominantly produced from the combustion of coal or crude oil. | | Particulate
Matter
(PM ₁₀ and
PM _{2.5}) | Particulate matter is everything in the air that is not a gas. Particles can come from natural sources such as pollen, as well as human made sources such as smoke from fires, emissions from industry and dust from tyres and brakes. PM ₁₀ refers to particles under 10 micrometres. Fine particulate matter or PM _{2.5} are particles under 2.5 micrometres. | ¹ UK Health Security Agency. Chemical Hazards and Poisons Report, Issue 28, 2022. ² Defra. Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006 On 1st April 2023 Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council, Allerdale Borough Council and Copeland Borough Council. This report collates the air quality data for the new Council area for the first time. Cumberland has four Air Quality Management Areas, all within the city of Carlisle. Air quality has been monitored in Cumberland as part of the local authority review and assessment process since 1996. In addition to nitrogen dioxide, other pollutants measured include particulate matter (both PM₁₀ and PM_{2.5}) and benzene (measured as part of Defra's Non-Automatic Hydrocarbon Network). These continue to be measured in the former Carlisle City Council area. However, as local authorities are no longer required to report benzene concentrations, we are not reporting these in this Annual Status Report. ## **Actions to Improve Air Quality** Whilst air quality has improved significantly in recent decades, there are some areas where local action is needed to protect people and the environment from the effects of air pollution. The Environmental Improvement Plan³ sets out actions that will drive continued improvements to air quality and to meet the new national interim and long-term targets for fine particulate matter (PM_{2.5}), the pollutant of most harmful to human health. The Air Quality Strategy⁴ provides more information on local authorities' responsibilities to work towards these new targets and reduce fine particulate matter in their areas. The Road to Zero⁵ details the Government's approach to reduce exhaust emissions from road transport through a number of mechanisms, in balance with the needs of the local community. This is extremely important given that cars are the most popular mode of personal travel and the majority of Air Quality Management Areas (AQMAs) are designated due to elevated concentrations heavily influenced by transport emissions. ³ Defra. Environmental Improvement Plan 2023, January 2023 ⁴ Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023 ⁵ DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018 Cumberland Council has taken forward a number of measures during the current reporting year of 2023, in pursuit of improving local air quality. Key local measures continue to support improvements in local air quality and the City Council continues to work on: - Carlisle Southern Link Road: This will connect Junction 42 of the M6 with the A595 to the west. The route will include new junctions linking existing radial routes into Carlisle and the Garden Village. The 8km route will include bridges over two main railway lines and the Caldew and Petteril rivers, a network of footways and cycleway. This construction work is now underway. - Bus infrastructure improvements: Ongoing improvements to bus services with new shelters and raised kerbs continues. In addition, plans for large new housing developments will include public transport provision. - Ongoing work to provide grant funding for home isolation and domestic renewable heating options. - Ongoing schemes to introduce vehicle charging points on council owned land and as part of new private development, including charging provision in all new residential developments. ### **Conclusions and Priorities** Nitrogen dioxide concentrations were generally lower in 2023 compared to 2022 thorough out Cumberland. Of the sixty-eight locations where monitoring took place in 2022 and 2023, NO₂ concentrations decreased at fifty-four sites and increased at fourteen in 2023 compared to 2022. There continues to be no exceedance of the annual objective concentration for NO₂ at locations relevant for human exposure anywhere in Cumberland. While the NO₂ concentrations are sufficiently low within AQMA 1, AQMA 2 and AQMA 5 that they can be revoked, the concentration measured within AQMA 4 increased slightly from 33.5 to 34.1 µg m⁻³ so monitoring should continue to ensure the ongoing measures in the AQAP are achieving success. Cumberland Council's priorities for the coming year are: - Revoke AQMA 1, AQMA 2 and AQMA 5. - Drive forward on actions identified in the Action Plan. - Continue to progress development of the Carlisle Southern Link Road - Promote travel plans and introduction of green spaces for all new housing developments. Continue to work with businesses to promote more widespread use of alternative transport. - Improve the vehicle charging infrastructure. - Increase zero and near zero emission vehicle uptake as part of new residential development. ## Local Engagement and How to get Involved There are a number of ways in which the public can get involved with improving air quality: - Taking part in Green Travel Plan arrangements with their employer. - Joining local cycle groups and walk to school/work groups. - The use of sustainable transport options including cycling, walking and the bus. - Investigate how to improve the energy efficiency at home, including sustainable heating and improved home insulation. Contact Cumberland Council to find out what grants are currently available. - Become involved in community groups, for example The Waverley Viaduct Trust is currently working to reopen the Waverley Viaduct Bridge. The Local Enterprise Partnership (LEP) also works to secure government grant funding for local projects. Cumberland Council's website can be used to view all previous air quality review and assessment reports as well as real time monitoring data and advice on how to reduce emissions to air. ## **Local Responsibilities and Commitment** This ASR was prepared by the Environmental Health department of Cumberland Council with the support of the Highways department and Planning department. This ASR has been signed off by the Director of Public Health. Colin Cox: Mr If you have any comments on this ASR please send them to Environmental Health at: Civic Centre, Rickergate, Carlisle, CA3 8QG 01228 817000 Environmentalhealth@cumberland.gov.uk # **Table of Contents** | Ex | ecutive | Summary: Air Quality in Our Area | i | |-----------|---------------------|--|-----| | | | y in Cumberland Council | | | Δ | ctions to | o Improve Air Quality | ii | | C | Conclusio | ons and Priorities | iii | | L | ocal En | gagement and How to get Involved | iv | | | | sponsibilities and Commitment | | | 1 | Local | Air Quality Management | 1 | | 2 | Action | ns to Improve Air Quality | 2 | | 2.1 | Air | Quality Management Areas | 2 | | 2.2
Co | Pro | gress and Impact of Measures to address Air Quality in Cumberland | | | 2.3
Co | | .5 – Local Authority Approach to Reducing Emissions and/or ations | 11 | | 3
Na | | uality Monitoring Data and Comparison with Air Quality Objectives and Compliance | | | 3.1 | Sun |
nmary of Monitoring Undertaken | 14 | | | 3.1.1 | Automatic Monitoring Sites | 14 | | | 3.1.2 | Non-Automatic Monitoring Sites | 15 | | 3.2 | Indi | vidual Pollutants | 15 | | | 3.2.1 | Nitrogen Dioxide (NO ₂) | 15 | | | 3.2.2 | Particulate Matter (PM ₁₀) | 18 | | | 3.2.3 | Particulate Matter (PM _{2.5}) | 19 | | Аp | pendix | A: Monitoring Results | 20 | | Аp | pendix | B: Full Monthly Diffusion Tube Results for 2023 | 43 | | Ар | | C: Supporting Technical Information / Air Quality Monitoring Data QA | | | N | | changed Sources Identified Within Cumberland Council During 2023 | | | Δ | dditiona | al Air Quality Works Undertaken by Cumberland Council During 2023 | 48 | | C | QA/QC o | f Diffusion Tube Monitoring | 48 | | | Diffusio | n Tube Annualisation | 50 | | | Diffusio | n Tube Bias Adjustment Factors | 50 | | | NO ₂ Fa | Il-off with Distance from the Road | 54 | | C | QA/QC o | f Automatic Monitoring | 54 | | | PM ₁₀ ar | nd PM _{2.5} Monitoring Adjustment | 54 | | | | tic Monitoring Annualisation | | | | | Il-off with Distance from the Road | | | | | D: Map(s) of Monitoring Locations and AQMAs | | | Аp | pendix | E: Summary of Air Quality Objectives in England | 63 | | Glossary of Terms | 64 | |-------------------|----| | References | 65 | # **Figures** | Figure A.1 - Trends in Annual Mean NO ₂ Concentrations: Automatic monitoring at Morto | n | |--|----| | Manor | 31 | | Figure A.2 - Trends in Annual Mean NO ₂ Concentrations: Along A7 | 33 | | Figure A.3 - Trends in Annual Mean NO_2 Concentrations: for sites in city centre and with | in | | AQMA 2 and AQMA 5 | 33 | | Figure A.4 - Trends in annual mean NO2: along Wigton Road, Bridge Street and London | | | Road | 34 | | Figure A.5 - Trends in annual mean NO ₂ : Carlisle Northern Development Route and | | | various other locations | 34 | | Figure A.6 - Trends in annual mean NO2 concentrations in the former council area of | | | Allerdale BC | 35 | | Figure A.7 - Trends in annual mean NO2 concentrations in the former council area of | | | Copeland BC | 36 | | Figure A.8 - Trends in Annual Mean PM ₁₀ Concentrations | 38 | | Figure A.9 - Trends in Number of 24-Hour Mean PM ₁₀ Results > 50 μg m ⁻³ | 40 | | Figure A.10 - Trends in Annual Mean PM _{2.5} Concentrations | 42 | | | | | Figure C.1 - National bias adjustment spreadsheet (former Carlisle City Council) | 52 | | Figure C.2 - National bias adjustment spreadsheet (former Allerdale Borough Council) | 53 | | Figure C.3 - National bias adjustment spreadsheet (former Copeland Council) | 53 | | | | | Figure D.1 - Map of Non-Automatic Monitoring Site- overview | 56 | | Figure D.2 - Location of diffusion tubes within Cumberland Council (Carlisle Area) | 57 | | Figure D.3 - Location of diffusion tubes within Cumberland Council (in outlying areas of | | | former CCC) | 58 | | Figure D.4 - Location of diffusion tubes within Cumberland Council (Allerdale) | 59 | | Figure D.5 - Location of diffusion tubes within Cumberland Council (Copeland) | 60 | | Figure D.6 - Location of air quality management areas and diffusion tubes | 61 | | Figure D.7 - Location of air quality management areas (zoomed in) | 62 | ## **Tables** | Table 2.1 – Declared Air Quality Management Areas | 3 | |--|-------------------| | Table 2.2 – Progress on Measures to Improve Air Quality | 8 | | | | | Table A.1- Details of Automatic Monitoring Sites | 20 | | Table A.2 - Details of Non-Automatic Monitoring Sites | 21 | | Table A.3 - Annual Mean NO ₂ Monitoring Results: Automatic Monitoring (µg/m³) | 27 | | Table A.4 - Annual Mean NO_2 Monitoring Results: Non-Automatic Monitoring ($\mu g/m^3$) | 28 | | Table A.5 - 1-Hour Mean NO_2 Monitoring Results, Number of 1-Hour Means > $200\mu g/m$ | า ³ 32 | | Table A.6 - Annual Mean PM ₁₀ Monitoring Results (µg m ⁻³) | 37 | | Table A.7 - 24-Hour Mean PM $_{ m 10}$ Monitoring Results, Number of PM $_{ m 10}$ 24-Hour Means > | 50 | | μg m ⁻³ | 39 | | Table A.8 - Annual Mean PM _{2.5} Monitoring Results (μg m ⁻³) | 41 | | | | | T. I. D. 1 NO. 0000 DW .: T. I. D. 14 / 2 | 40 | | Table B.1 – NO ₂ 2023 Diffusion Tube Results (μg m ⁻³) | 43 | | T. I. I. O. 4 | 5 0 | | Table C.1 – Annualisation Summary (concentrations presented in μg m ⁻³) | | | Table C.2 – Bias Adjustment Factor | 50 | | | | | Table E.1 – Air Quality Objectives in England | 63 | ## 1 Local Air Quality Management This report provides an overview of air quality in Cumberland Council during 2023. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995), as amended by the Environment Act (2021), and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in order to achieve and maintain the objectives and the dates by which each measure will be carried out. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Cumberland Council to improve air quality and any progress that has been made. The statutory air quality objectives applicable to LAQM in England are presented in Table E.1. # 2 Actions to Improve Air Quality ### 2.1 Air Quality Management Areas Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 18 months. The AQAP should specify how air quality targets will be achieved and maintained, and provide dates by which measures will be carried out. A summary of AQMAs declared by Cumberland Council can be found in Table 2.1. The table presents a description of the four AQMAs that are currently designated within Cumberland Council. Appendix D: Map(s) of Monitoring Locations and AQMAs provides maps of AQMAs and also the air quality monitoring locations in relation to the AQMAs. The air quality objectives pertinent to the current AQMA designations are as follows: NO₂ annual mean. We propose to revoke the following AQMAs: AQMA1, AQMA 2 and AQMA 5, as the monitoring has shown NO₂ concentrations to be compliant with air quality objectives for at least five years. Table 2.1 - Declared Air Quality Management Areas | AQMA
Name | Date of
Declaration | Pollutants
and Air
Quality
Objectives | One Line
Description | Is air quality in the AQMA influenced by roads controlled by Highways England? | Level of
Exceedance:
Declaration | Level of
Exceedance:
Current Year | Number of
Years
Compliant
with Air
Quality
Objective | Name and Date of
AQAP
Publication | Web Link to AQAP | |--------------|---|--|---|--|--|---|---|--|--| | AQMA 1 | 02/12/2005
Amended 25 th
July 2019 | NO ₂ Annual
Mean | AQMA 1 Amended 25 th July 2019 to include just 100 m Section along B6264 Brampton Road. | YES | 45.3 | 24.3 | 11 | Cumberland Council
Air Quality Action
Plan | https://www.carlisle.gov.uk/Porta
ls/0/Documents/Residents/Envir
onment/AQAP CCC 2021.pdf?v
er=MTwlH1-
2grJugOerj9V9rQ%3d%3d | | AQMA 2 | 26/01/2007 | NO₂ Annual
Mean | AQMA 2 Currock
Street and the
properties immediately
to the west of it,
between the junction
with James St/Water St
and Crown St. | NO | 44.6 | 26.8 | 13 | Cumberland Council
Air Quality Action
Plan | https://www.carlisle.gov.uk/Porta
ls/0/Documents/Residents/Envir
onment/AQAP CCC 2021.pdf?v
er=MTwlH1-
2grJugOerj9V9rQ%3d%3d | | AQMA 3 | 01/08/2008
Revoked 3 rd
July 2019 | NO ₂ Annual
Mean | AQMA 3 Wigton Road
between Crummock
Street and Caldewgate
roundabout as well as
properties on
Caldcotes. | N/A | 40 | N/A | N/A | N/A | N/A | | AQMA 4 | 01/08/2008 | NO ₂ Annual
Mean | AQMA 4 North side of
the A595 at Bridge
Street, northbound
from the junction with
Shaddongate. | YES | 43.9 | 34.1 | 4 | Cumberland Council
Air Quality Action
Plan | https://www.carlisle.gov.uk/Porta
ls/0/Documents/Residents/Envir
onment/AQAP CCC 2021.pdf?v
er=MTwlH1-
2grJugOerj9V9rQ%3d%3d | | AQMA 5 | 01/08/2008 | NO ₂ Annual
Mean | AQMA 5 Junction of
Dalston Road and
Junction Street | NO | 48 | 28.1 | 8 | Cumberland Council
Air Quality Action
Plan | https://www.carlisle.gov.uk/Portals
/0/Documents/Residents/Environm
ent/AQAP CCC 2021.pdf?ver=MTw
IH1-2grJugOerj9V9rQ%3d%3d | | AQMA 6 | 01/08/2008
Revoked 3 rd
July 2019 | NO₂ Annual
Mean | AQMA 6 London Road
and properties on
either side near the
junction with Blake
Street | N/A | 43.3 | N/A | N/A | N/A | N/A | [☑] Cumberland Council confirm the information on UK-Air regarding their AQMA(s) is up to date. [□] Cumberland Council confirm that all current AQAPs have been submitted to Defra. # 2.2 Progress and Impact of
Measures to address Air Quality in Cumberland Council There were appraisals from the former local authorities of Carlisle City Council and Allerdale Borough Council. Copeland Borough Council did not complete an ASR in 2023 and in 2022. #### **Carlisle City Council** Defra's appraisal concluded the ASR was well structured, detailed and provides the information specified in the guidance. The following comments were made and where appropriate a response is provided. Calculations of Local Bias Adjustment Factor have only been mentioned and the calculations for this factor have not been completed. This factor has not been clearly stated in the report and no clear justification for why the calculations are incomplete have been provided. There is also no discussion as to the choice of bias adjustment factor applied. **Response:** The local derived factor was 0.75 and in keeping with the previous ASRs the national factor (0.83) was chosen. The calculations and justification for the 2023 data year will be provided in this ASR. 2. Deviations from the diffusion tube deployment calendar have been noted but the council have not provided justification for why this occurred. **Response:** The deviation was due to staff availability, sickness and leave. 3. Values reported in tables should only be in bold if they exceed the relevant AQO. Table A.6 reports the annual PM10 mean concentration in bold when it is below the AQO. **Response:** This was a formatting error and will be removed this year's report. 4. The council have provided extensive detail for its action plan measures clearly illustrating each measures progress to date and providing good context when there are barriers to implementation. It is encouraging to see that the Council are dedicated to air quality within their jurisdiction through the continuous review of their air quality strategies. - 5. The Council have laid out detailed measures specific to lowering PM_{2.5} emissions as well as reporting on the Public Health Outcomes Framework D01 indicator. This includes comparison to England and the North-West Region. This is an example of good practice and helps provide context for the council's measures for tackling PM_{2.5} emissions. - 6. The Council have discussed trends in annual mean NO₂ concentrations, providing figures to depict these trends which are grouped by location. The trends presented are informative and provide clear detail of pollutant concentration levels, in comparison to pollutant objectives. In addition, the appraisal report recommended that the Council should revoke AQMA 1, AQMA 2 and AQMA 5 as they have all been compliant with the AQOs for 10, 12 and 7 years respectively. #### **Allerdale Borough Council** Defra's appraisal commended the former local authority for work undertaken in relation to a local air quality strategy. The appraisal report also emphasised from 2023 that local authorities with no AQMA will be required to produce a local Air Quality Strategies (AQS). The appraisal concluded the ASR was well structured, detailed and provides the information specified in the guidance. There were no substantive comments. #### **Copeland Borough Council** It is acknowledged that the ASR for Copeland was not submitted in 2022 and 2023. This has been addressed in this report, by including the last 5 years of diffusion tube data for Copeland area. It is evident that the monitoring data for all locations continue to be well below the objective level for the 5 year period. Cumberland Council has taken forward a number of direct measures during the current reporting year of 2023 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. Thirteen measures are included within Table 2.2, with the type of measure and the progress Cumberland Council have made during the reporting year of 2023 presented. Where there have been, or continue to be, barriers restricting the implementation of the measure, these are also presented within Table 2.2. More detail on these measures can be found in the respective Action Plans: 'Cumberland Council Air Quality Action Plan 2021 (Carlisle Area) (Revised October 2023)'. Key completed measures are: - Improvements to the signalling on Castle Way and Bridge Street was implemented in August 2022. This change prevents vehicles, including HGV's and buses from leaving the Willowholme industrial estate and then being subsequently stopped at the pedestrian crossing on Bridge Street. This has reduced the number of standing starts at this incline in the road. - Construction work is underway on the Carlisle Southern Link Road. This is expected to provide a major improvement on traffic volumes and congestion in the city centre. Work will be undertaken to identify any new relevant receptors that may be negatively impacted by the new road, through increased traffic volumes. Additional monitoring may be undertaken when the road is complete and opened for use. Cumberland Council does not expect any of our measures to be completed over the course of the next reporting year, as many of our measures are ongoing in nature, with no expected completion date. The Carlisle Southern Link Road is scheduled to open to the public in 2025. Cumberland Council's priorities for the coming year are: - Drive forward on actions identified in the Action Plan. - Continue to progress development of the Carlisle Southern Link Road - Promote travel plans and introduction of green spaces for all new housing developments. Continue to work with businesses to promote more widespread use of alternative transport. - Improve the vehicle charging infrastructure. - Increase zero and near zero emission vehicle uptake as part of new residential development. - Revoke AQMA's 1, 2 and 5. Cumberland Council worked to implement these measures in partnership with the following stakeholders during 2023: Highways department - Planning department - Green Spaces department The principal challenges and barriers to implementation that Cumberland Council anticipates facing are funding restrictions and staff resources to implement measures such as public awareness campaigns. Progress on some measures has been slower than expected due to restrictions in available funding. Some measures such as the Carlisle Southern Link Road are dependent on external organisations and influences such as inflationary pressure and global events. Cumberland Council anticipates that the measures stated above and in Table 2.2 will achieve compliance in all our AQMA's. Table 2.2 – Progress on Measures to Improve Air Quality | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding
Source | Defra
AQ
Grant
Funding | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction
in Pollutant /
Emission
from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|--|---|--|---|---|--|-----------------------------------|------------------------|---------------------------------|------------------------------|--|--|---|---| | 1 | Construction of the new Carlisle Southern Link Road (CSLR). This will extend the existing Carlisle Northern Development Route (CNDR). Monitor the air quality impacts of the CSLR and CNDR. | Traffic Management | Other | <2021 | 2025 | Cumberland Council | Cumberland
Council and
Ministry of
Housing,
Communities
and Local
Government | No | Funding is
in place | £150 million | Building work is
underway | Potential for
significant
improvement in
NO2 levels across
the city centre. | Reduced NO2 levels at monitoring locations and within AQMA's. | The CNDR is operational. Monitoring at receptors on new road revealed consistently low NO2 levels. There is evidence of NO2 improvements and traffic reduction in the city centre. Several new cycle links from arterial roads are in place. Construction of the Carlisle Southern Link Road is underway. Environmental Health assisted in the consultation process. Delays were incurred due to rising costs and supply issues caused by global events. Expected to be open to the public in 2025. | The new Carlisle Southern Link Road is part of the wider Garden Village housing project, which is expected to deliver 10'000 new homes by 2030.
The road would extend the existing CNDR. This would provide a complete bypass around the City Centre with both ends of the route connected to the M6 Motorway. | | 2 | Effective traffic management measures will be implemented to improve traffic flow on the existing road network and in new developments. | Traffic Management | UTC, Congestion
management, traffic
reduction | 2012 | Ongoing. | Cumberland Council | Cumberland
Council | No. 2022
funding
bid failed | Ongoing. | Unknown | Ongoing | Modelling
undertaken at
AQMA 4
indicates that a
2.7% reduction
in NOx would
achieve
compliance. | Reduced NO2 levels and standing traffic within AQMA's. | Traffic modelling has shown that emissions from diesel vehicles dominate emissions. Emissions factor toolkit has been used to show increased traffic speeds would reduce oxide of nitrogen emissions within Bridge Street AQMA. Work has been carried out to the traffic light sequence in this area to reduce standing start traffic. Early data indicates a significant improvement in NO2 levels within the AQMA. | Improvements to the signalling on Castle Way and Bridge Street was implemented in August 2022. Early monitoring data shows significant improvement in AQMA 4. A funding bid to make wider improvements to traffic management around Bridge St AQMA including automatic NOx measurements was rejected by Defra. | | 3 | Environmental Health will work alongside the Planning Department to minimise the air quality impacts of new developments. | Policy Guidance and
Development Control | Air Quality Planning
and Policy Guidance | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Effective links between EH and Planning. AQIA's submitted where necessary. Early consultation with applicants. | Environmental Health is consulted on all proposed developments which may impact on air quality. Responses are aimed at minimising AQ impacts, particularly within or close to our AQMA's. This includes large residential developments. Recommendations made for car charging points for all new residential properties. | Environmental Health
comment on all
potentially polluting
developments. The
outcome depends on
Planning Department
and current policy | | 4 | Improvements to passenger transport infrastructure. Sustainable transport will be integrated into major new developments | Transport Planning
and Infrastructure | Bus route
improvements | 2012 | Ongoing | Cumberland Council and local public transport providers | Cumberland
Council and
local public
transport
providers | No | Ongoing. | Unknown | Ongoing. | Not calculated | Improved bus service.
Increased use of
transport provided.
Reduced NO2 along
main routes | Ongoing improvements to bus services with new shelters and raised kerbs. Plans for large new housing developments include public transport provision and/or sustainable transport options. | Success is dependent on public uptake of sustainable transport options. The council has no real control over the improvement of vehicle fleet. | | 5 | Cycling and walking will be encouraged. Implement new and improved pedestrian and cycle links | Transport Planning
and Infrastructure | Cycle network | 2012 | Ongoing | Cumberland Council | Cumberland
Council with
various
funding bids. | No | Ongoing. | Unknown | Ongoing. | Not calculated | Completion of proposed works and ongoing improvement of the cycle and pedestrian route network. | Pedestrian/cycle bridge connecting Currock and Denton Holme, over the railway line are complete. Ongoing applications for government funding for schemes that aim to improve the existing cycleways, creating new sections of cycle track Extensive plans to increase the cycle path network are now in place. | Ongoing plans associated with improved pedestrian and cycle connections to the CNDR. Funding required to accelerate major improvements. | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding
Source | Defra
AQ
Grant
Funding | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction
in Pollutant /
Emission
from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|--|--|---|--|---|---------------------------|--|---------------------------------|-------------------|---------------------------------|----------------|--|---|--|---| | 6 | Travel plans will be required for all new developments that meet the criteria. Existing businesses will be encouraged to implement, monitor and review travel plans. | Promoting Travel
Alternatives | Workplace Travel
Planning | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Increased number of participant businesses and more widespread use of alternative transport. | All schools within the city now have travel plans. New developments likely to result in increased highway usage must submit a travel plan for approval when making an application. | Difficult to quantify the impact of Travel Plans. | | 7 | The council will continue to provide comprehensive environmental control over emissions from all Part A2 and B Processes located within the local authority area. | Environmental Permits | Other measure through permit systems and economic instruments | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Risk based inspections showing that emission limits are being met and efforts are being made to improve on national objectives. | All processes which fall under part B & A2 processes are permitted by Cumberland Council. No recent enforcement action required in relation to emissions. | Any new applications are considered by Environmental Health as part of the planning consultation process and the environmental permitting procedures. | | 8 | The council will continue to investigate complaints of black smoke and smoke nuisance as well as managing smokeless zones. Enforcement action will be taken as necessary. | Public Information | Other | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Reduction in the
number of complaints
from members of the
public. Reduction in
repeat offences. | There is information on website. Environmental Health provide advice and enforcement as required. Smoke complaints are responded to involving domestic fires, bonfires, trade waste, industrial and dark smoke. Advice leaflet sent out for all cases of domestic burning. Advice given to minimise potential for smoke issues and ensure compliance with smokeless zones. | The Air Quality Strategy set out a goal to cut public exposure to particulate matter pollution. The aim is to reduce by half the number of people in the United Kingdom exposed to the WHO guideline concentration of 10 µg m³ by 2025. The measures set out here will contribute to this target. | | 9 | Provision of home improvement grants and energy saving advice to the public. | Public Information | Other | 2012 | Ongoing | Cumberland Council | Cumberland
Council with
various
funding bids. | No | Ongoing. | Unknown | Ongoing. | Not calculated | Number of properties
taking up schemes,
resulting in Improved
energy efficiency of
housing stock. | Cumberland Council Home Improvement Agency is currently delivering Health through Warmth Scheme, supported by the Energy Companies Obligation. This includes boiler upgrades and home insulation. Safe and warm grants are provided by the council to deliver up to £7,500 to enable low income homes to carry out minor repairs and energy efficiency measures to their homes. Work has begun on enforcing the Minimum Energy Efficiency Standards, specifically aimed at private rented sector properties. New energy efficiency grants are now available up to £3000 through council grant scheme. Available schemes are regularly changing and evolving. | Cumberland Council have now revised Housing Renewal Assistance Policy under the Regulatory Reform Order 2002. This covers all grants involving housing and energy efficiency measures. | | 10 | Environmental Health will work
alongside the Neighbourhoods and Green Spaces team to implement the effective use of trees and green areas to offset traffic derived emissions. | Public Information | Other | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Increase in trees and
vegetation in visible
locations. Increased
public interest. | Cumberland Council continues to manage and maintain trees in parks and green spaces, including some additional planting, of mainly mixed broadleaf species, where necessary. Planting of green areas is an essential part of many new developments, including residential. | Limitations to planting options in busy urban areas. Parks and open spaces do not have significant air quality issues. Green Spaces continue to have a positive public impact. | | 11 | Air Quality
considerations to
be included in all
relevant council
policies and
strategies. | Policy Guidance and
Development Control | Air Quality Planning
and Policy Guidance | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Increased awareness of
air quality issues and
consideration given by
more council
departments. | Included air quality links
within most major relevant
policies including Local
Transport Plan (LTP 3)
(2011-26) and The Carlisle | Air Quality considerations are put forward during discussion and consultation stages of policy development. | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding
Source | Defra
AQ
Grant
Funding | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction
in Pollutant /
Emission
from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|--|-------------------------------------|---|--|---|---------------------------|--|---------------------------------|-------------------|---------------------------------|----------------|--|---|---|--| | | | | | | | | | | | | | | | District Local Plan (2015-
30). New schemes being
developed to deliver
improved cycling routes and
vehicle charging
infrastructure. | | | 12 | Promotion of air quality and sustainable transport issues. Air quality information and monitoring data will be provided to the public. | Public Information | via the Internet | 2012 | Ongoing | Cumberland Council | Cumberland
Council | No | Ongoing. | Unknown | Ongoing. | Not calculated | Increased public
awareness and
participation in
improving air quality. | Air quality info and real time monitoring data is available on the website. Monitoring data shows continued improvement in most areas. Cumberland Council is actively supporting and promoting Clean Air Day, utilising social media and our website, as part of the Global Action Plan. Cumberland Council has ongoing projects to cut carbon emissions. These aim to raise ambition to tackle climate change and sharing learning and resources. The public can influence and drive climate action through citizens' juries and other projects, with community groups steering the programme. | Difficult to quantify improvements as a direct result of promotional work or providing monitoring data. | | 13 | Installation of
charging points and
development of
charging network | Promoting Low
Emission Transport | Procuring alternative
Refuelling infrastructure
to promote Low
Emission Vehicles, EV
recharging, Gas fuel
recharging | 2023 | Ongoing | Cumberland Council | Cumberland
Council with
various
funding bids. | No | Ongoing. | Unknown | Ongoing. | Not calculated | More charging points
available | In 2023, Cumberland Council received notification that it had been successful with funding to install up to 900 charging points and develop its strategy ⁶ . | Difficult to quantify improvements as a direct result of providing charging points. The aim is to assist with the transition to Electric Vehicles. | $^{^{6}\ \}underline{\text{https://www.yourcumbria.org/News/2021/partnershipsuccessfulbidtodriveforwardevpoints.aspx}$ # 2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations As detailed in Policy Guidance LAQM.PG22 (Chapter 8) and the Air Quality Strategy⁷, local authorities are expected to work towards reducing emissions and/or concentrations of fine particulate matter (PM_{2.5})). There is clear evidence that PM_{2.5} (particulate matter smaller 2.5 micrometres) has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. Cumberland Council is taking the following measures to address PM_{2.5}: - Cumberland Council had monitored PM_{2.5} levels at Paddy's Market AQMS since 2009 as part of the AURN. This is a busy city centre junction between two AQMA's. The annual mean concentrations were consistently well below the objective at around 8-11 µg m³ at this location. The monitoring equipment was relocated to Morton Manor Community Centre in 2021. PM_{2.5} concentrations have remained within this range. There are ongoing efforts to reduce to reduce the PM_{2.5} concentrations. - The Environmental Health Department will continue to work in partnership with the Highways Department to improve traffic flows and reduce congestion at key junctions. - Environmental Health will continue to work with the Planning Department with regard to new local developments with significant air quality implications and ensure that air quality implications and mitigation measures are taken into consideration in the planning process. - Environmental Health will continue to work alongside the Neighbourhoods and Green Spaces team to investigate and implement the effective use of trees and green areas to offset traffic derived emissions in existing AQMA's and in new development areas. - The Council will also continue to provide comprehensive control over emissions from all Part A2 and B Processes located within the local authority area. We will work _ ⁷ Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023 closely with the operators of these installations to continuously monitor and improve on their emissions to air as part of the permitting process. Cumberland Council has eight designated smoke control areas. These are shown in Figure 2-1. Figure 2-1 Location of Smoke Control Areas within Cumberland Council Four are within the former Carlisle City Council area. More detail can be found at the following link: http://www.carlisle.gov.uk/LinkClick.aspx?fileticket=9E67HYHexDw%3d&tabid=729 &portalid=0&mid=2838). - Three within the former area of Copeland Borough Council. More detail can found at the following link: <u>Smoke control areas | Copeland Borough Council</u> - One is found with the former Allerdale Borough Council. The most recent available data from Public Health England's Public Health Outcomes Framework⁸ show that the fraction of total mortality which is attributable to particulate air pollution (D01) within Cumberland Council (Carlisle Area) was 3.3 % in 2020 (the most recent data available; the Cumberland values for subsequent years were not available). This is below the average for both the North West region (5.6%) and England as a whole (5.8%) based on 2022 values. Data accessed 3rd July 2024. ⁸ https://fingertips.phe.org.uk/profile/public-health-outcomesframework/data#page/3/gid/1000043/pat/6/par/E12000002/ati/501/are/E06000008/iid/93861/age/230/sex/4/c at/-1/ctp/-1/yrr/1/cid/4/tbm/1 # 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance This section sets out the monitoring undertaken within 2023 by Cumberland Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2019 and 2023 to allow monitoring trends to be identified and discussed. ## 3.1 Summary of Monitoring Undertaken On 1st April 2023 Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council, Allerdale Borough Council and Copeland Borough Council. The results from the respective former monitoring networks will be combined in this year's annual status report. #### 3.1.1 Automatic Monitoring Sites Cumberland Council undertook automatic (continuous) monitoring at Morton Manor Community Centre⁹ during 2023. Table A.1 in Appendix A shows the details of the automatic monitoring sites. NB. Local authorities do not have to report
annually on the following pollutants: 1,3 butadiene, benzene, carbon monoxide and lead, unless local circumstances indicate there is a problem. Automatic monitoring results are available through the UK-Air website (https://uk-air.defra.gov.uk/data/data_selector). Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C. _ ⁹ This site is known as Carlisle Morton A595 within Defra's compliance monitoring network. More information is available through UK_AIR website: Site Information for Carlisle Morton A595(UKA00932) - Defra, UK #### 3.1.2 Non-Automatic Monitoring Sites Cumberland Council undertook non- automatic (i.e. passive) monitoring of NO₂ at 70 sites during 2023. This includes 28 sites for former Carlisle City Council, 18 sites for former Allerdale Borough Council and 24 sites for former Copeland Borough Council Table A.2 in Appendix A presents the details of the non-automatic sites. Within the former Allerdale Borough Council area, two sites (Strawberry How Road, Cockermouth, DT13 and Kirkby Street, Maryport, DT14) closed at the end of 2022 and were replaced by two new sites at South End Street, Wigton, DT17 and West Street, Aspatria, DT18. Also, within this former local authority two diffusion tubes were exposed at each site as had been done in previous years. At the other two former local authorities there were no changes for the monitoring sites compared to 2022. Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C. #### 3.2 Individual Pollutants The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C. #### 3.2.1 Nitrogen Dioxide (NO₂) Automatic monitoring occurs only at Morton Manor Community Centre. Sampling at this site began in October 2021¹⁰. In 2023 in the annual NO₂ average concentration was 9.0 μg m⁻³, the same as measured in 2022. $^{^{10}}$ The annual mean concentration for 2021 at Morton Manor Community Centre was 11.4 μ g m⁻³. Because the data capture was 18.9 % and outside the permissible range for annualisation the annual concentration is only be considered an indicative measurement. Elsewhere within Cumberland Council automatic monitoring of nitrogen dioxide concentrations began at Paddy's Market and Stanwix Bank in 2006 and 2007 and stopped at each site in 2021 and 2016, respectively. Figure 3-1 shows that the annual mean concentration has been below the annual mean objective since 2011. Figure 3-1 Automatic montoring data (2006 – 2023) Table A.3 and Table A.4 in Appendix A compare the ratified and adjusted monitored NO_2 annual mean concentrations for the past five years with the air quality objective of 40 μ g m⁻³. Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e. the values are exclusive of any consideration to fall-off with distance adjustment). The annual mean concentrations are compared with the air quality objective of 40 μg m⁻³ in Figures A.1 to A.7. Generally, the NO₂ concentrations are less than those measured in 2022. Figure A.1 shows the NO₂ concentration measured by the automatic monitor at Morton Manor Community Centre in 2023. The concentration 9.0 μ g m⁻³ is considerably less than those measured at Paddy's Market which over the five-year period (2016 to 2020) ranged from a low of 19 μ g m⁻³ in 2020 to a high of 27.6 μ g m⁻³ in 2016. For the purposes of the presenting results for each of the former local authorities Figures A.2 to A.5 show the trends within the former local authority area of Carlisle City Council and had been grouped historically according to Air Quality Management Areas- either revoked or current as well as showing trends in a number of other areas. Figures A.6 and A.7 show the five-year trends within the former respective local authority areas of Allerdale and Copeland. For sites situated along the A7 (see Figure A.2), the highest concentration (28.6 µg m⁻³) was measured at Stanwix Bank (A10) which represented a decrease of 0.1 µg m⁻³ compared to what was measured in 2022. For sites within AQMA 2 (Currock Street, B7) and AQMA 5 (Dalston Road, B4) NO₂ annual mean concentrations were 26.8 μg m⁻³ and 28.1 μg m⁻³, respectively. Representing decreases of by 1.9 μg m⁻³ and 1.2 μg m⁻³, respectively, compared to what was measured in 2022. Elsewhere in the city centre, concentrations decreased at all sites with the exception of Post Office for which concentration increased by 0.5 μg m⁻³ (Figure A.3) For sites situated along the section of Wigton Road closer to the city centre, Bridge Street and London Road (see Figure A.4) the highest concentration (34.1 μg m⁻³) continues to be measured in AQMA 4 Bridge Street (E8). This represents an increase of 1.8 μg m⁻³ compared to 2022. At most other sites in this part of the city concentrations decreased in 2023 compared to 2022. The largest decrease in concentration (1.6 μg m⁻³) occurred at Finkle Street (E22)- from 24.0 in 2022 to 22.4 μg m⁻³ in 2023. While the largest increase occurred at 3 Wigton Road (E22) from 25.9 μg m⁻³ to 27.1 μg m⁻³ – an increase of 1.1. μg m⁻³. The remaining sites along the Carlisle Northern Development Route and at a number of locations to the south of city centre and at the airport all measured concentrations considerably less than the annual objective concentration (see Figure A.5). At all these locations concentrations decreased in 2023 compared to 2022. Figure A.6 presents the five-year trend in the former local authority of Allerdale Borough Council. In 2023 the highest NO₂ concentration (22.9 µg m⁻³) was measured at Murray Road (DT 2); this represents an increase of 0.9 µg m⁻³ compared to 2022. At most sites the NO₂ concentrations decreased in 2023 compared to 2022 (10 sites decreased within a total of 16 sites which had sampling in both 2022 and 2023). With the largest decrease (2.4 μ g m⁻³) occurring at Main Road (DT 8), where the concentration decreased from 12.5 μ g m⁻³ to 10.1 μ g m⁻³. The largest increase (0.9 μ g m⁻³) occurring at Northside Primary School (DT12), where the concentration increased from 11.8 μ g m⁻³ to 12.7 μ g m⁻³. Figure A.7 presents the five-year trend in the former local authority of Copeland Borough Council. In 2023 the highest NO₂ concentration (15.6 μg m⁻³) was measured at Strand St, Whitehaven (N11); this represents a decrease of 1.2 μg m⁻³ compared to 2022. At most sites the NO₂ concentrations decreased in 2023 compared to 2022 (20 sites within a total of 24). With the largest decrease (1.3 μ g m⁻³) occurring at Council Centre, St Georges Rd, Millom (N10), where the concentration decreased from 7.3 μ g m⁻³ to 6.0 μ g m⁻³. The largest increase (1.4 μ g m⁻³) occurring at 4 Holyoak, Beckermet (N13), where the concentration increased from 5.0 μ g m⁻³ to 6.4 μ g m⁻³. For diffusion tubes, the full 2023 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant. Table A.5 in Appendix A compares the ratified continuous monitored NO_2 hourly mean concentrations for the past five years with the air quality objective of 200 μ g m⁻³, not to be exceeded more than 18 times per year. #### 3.2.2 Particulate Matter (PM₁₀) Table A.6 in Appendix A: Monitoring Results compares the ratified and adjusted monitored PM₁₀ annual mean concentrations for the past five years with the air quality objective of 40 µg m⁻³. Table A.7 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past five years with the air quality objective of 50 μ g m⁻³, not to be exceeded more than 35 times per year. The automatic monitors within Carlisle were relocated from Paddy's Market to Morton Manor Community Centre during 2021. However, there was insufficient data capture at Morton Manor in 2021 to calculate a valid annual mean. In 2023, the PM₁₀ concentration measured at Morton Manor Community Centre was 11.8 µg m⁻³. This represented a decrease of 2.5 µg m⁻³ compared to what was measured in 2022 (14.3 µg m⁻³) and was lower than had been measured previously at Paddy's Market; over the five-year period 2016 to 2020 the PM₁₀ concentration ranged from a low of 13.6 µg m⁻³ in 2016 to a high of 18.6 m⁻³ in 2019. That the PM₁₀ concentrations measured in 2023 were the lowest historically measured in Carlisle is keeping with the national trend for PM₁₀ sites in the AURN network which also shows that PM₁₀ concentrations in 2023 were historically low¹¹. There were no days for which the short term AQO exceeded 50 µg m⁻³. #### 3.2.3 Particulate Matter (PM_{2.5}) Table A.8 in Appendix A presents the ratified and adjusted monitored PM_{2.5} annual mean concentrations for the past five years. PM_{2.5} is the pollutant which has the biggest impact on public health and on which the Public Health Outcomes Framework (PHOF) indicator is based. Therefore, although not covered by the LAQM regulations, local authorities are encouraged to understand the PM_{2.5} concentration within their council area. In 2023, the PM_{2.5} concentration measured at Morton Manor Community Centre was 7.9 μ g m⁻³. which is lower than the World Health Organisation guideline of 10 μ g m⁻³. Elsewhere, the background
PM_{2.5} maps for Cumberland Council for 2023 also showed no exceedance of the guideline concentration. The highest concentrations anywhere within Cumberland Council was 8.1 μ g m⁻³. This occurred for a 1 km x 1 km square located close to Sellafield. The square has Ordnance Survey coordinates of 302500, 504500. Cumberland Council also acknowledges Defra's proposed Environmental Targets for PM_{2.5}. - Annual mean concentration target 10 μg m⁻³ to be achieved by 2040; - Population Exposure Reduction Target 35% reduction (on 2018 baseline) by 2040. The Government expects local authorities will need to take actions in support of the new targets. 11 # **Appendix A: Monitoring Results** **Table A.1- Details of Automatic Monitoring Sites** | Site ID | Site
Name | Site Type | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In
AQMA?
Which
AQMA? | Monitoring
Technique | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance
to kerb
of
nearest
road (m) | Inlet
Height
(m) | |---------|-----------------|-----------|-------------------------------|--------------------------------|---|-------------------------------|---------------------------------------|--|--|------------------------| | ММСС | Morton
Manor | Roadside | 338195 | 554990 | NO ₂ , PM ₁₀
and PM _{2,5} | No | Chemiluminescence,
BAM 1020 heated | 6 | 8 | 2.37,
2.67,
2.77 | #### Notes: - (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property). - (2) N/A if not applicable **Table A.2 - Details of Non-Automatic Monitoring Sites** | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|--------------------------|--------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | A1 | 45 SCOTLAND
RD | Roadside | 339995 | 557188 | NO2 | NO | 4.5 | 1.5 | NO | 3.1 | | A10 | STANWIX BANK | Roadside | 340008 | 556842 | NO2 | NO | 1.5 | 1.5 | NO | 3.0 | | A12 | STANWIX BANK
CAR PARK | Roadside | 339935 | 557125 | NO2 | NO | 0.0 | 3.0 | NO | 2.8 | | A5 | 37 KINGSTOWN
RD | Roadside | 339758 | 558059 | NO2 | NO | 0.0 | 4.0 | NO | 2.8 | | A7 | 282
KINGSTOWN
RD | Roadside | 339526 | 559285 | NO2 | NO | 7.5 | 4.0 | NO | 2.7 | | A9 | BRAMPTON RD | Roadside | 340028 | 556833 | NO2 | Yes, AQMA
1 | 0.0 | 1.5 | NO | 2.8 | | B4 | DALSTON RD | Roadside | 339434 | 555638 | NO2 | Yes, AQMA
5 | 0.0 | 3.5 | NO | 2.8 | | B7 | 12 CURROCK
ST | Roadside | 340205 | 555198 | NO2 | Yes, AQMA
2 | 0.0 | 3.0 | NO | 3.1 | | C1 | LOWTHER ST | Roadside | 340216 | 556131 | NO2 | NO | 0.0 | 3.0 | NO | 2.9 | | C2 | TOURIST INFO | Urban Centre | 340069 | 555955 | NO2 | NO | N/A | N/A | NO | 2.7 | | C3 | DEVONSHIRE
ST | Roadside | 340218 | 555768 | NO2 | NO | 0.0 | 3.0 | NO | 2.9 | | D12 | POST OFFICE | Kerbside | 340307 | 555718 | NO2 | NO | N/A | 5.0 | NO | 3.0 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|--------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | D7 | 282 WARWICK
RD | Roadside | 341593 | 555893 | NO2 | NO | 0.0 | 7.0 | NO | 2.8 | | E22 | FINKLE ST | Roadside | 339834 | 556137 | NO2 | NO | 0.0 | 12.0 | NO | 2.8 | | E12 | 3 WIGTON RD | Roadside | 339225 | 555821 | NO2 | NO | 2.0 | 2.5 | NO | 3.0 | | E15 | 22 WIGTON RD | Roadside | 339091 | 555736 | NO2 | NO | 0.0 | 4.5 | NO | 3.9 | | E16 | JOVIAL SAILOR | Roadside | 339141 | 555900 | NO2 | NO | 0.0 | 2.5 | NO | 2.7 | | E19 | 49 WIGTON RD | Roadside | 338953 | 555610 | NO2 | NO | 0.0 | 2.5 | NO | 3.1 | | E6, E61,
E62 | MORTON
MANOR 3 | Roadside | 339467 | 555974 | NO2 | NO | 6.0 | 8.0 | Yes | 2.4 | | E8 | BRIDGE ST | Roadside | 339516 | 556024 | NO2 | Yes, AQMA
4 | 0.0 | 4.0 | NO | 3.1 | | F10 | 155
BOTCHERGATE | Roadside | 340600 | 555349 | NO2 | NO | 0.0 | 3.0 | NO | 2.7 | | F7 | 24 LONDON RD | Roadside | 340708 | 555240 | NO2 | NO | 0.0 | 4.5 | NO | 2.7 | | F9 | 129 LONDON
RD | Kerbside | 341099 | 554931 | NO2 | NO | 0.0 | 0.5 | NO | 3.0 | | G4 | THE HOBBIT | Rural | 336905 | 554036 | NO2 | NO | 0.0 | 19.0 | NO | 2.9 | | H5 | WIGTON RD | Roadside | 337643 | 554100 | NO2 | NO | 0.0 | 1.5 | NO | 2.4 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|-------------------------------|--------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | H6 | PETER LANE | Roadside | 337962 | 553220 | NO2 | NO | 0.0 | 4.0 | NO | 2.4 | | H7 | DALSTON RD | Roadside | 338282 | 553396 | NO2 | NO | 0.0 | 6.5 | NO | 2.4 | | H8 | AIRPORT | Other | 347874 | 561254 | NO2 | NO | 0.0 | 2.0 | NO | 2.4 | | DT1,
DT1B | Hall Park View,
Workington | Kerbside | 300721 | 528958 | NO2 | No | 0.0 | 1.0 | No | 2.5 | | DT2,
DT2B | Murray Road,
Workington | Urban Centre | 301194 | 528711 | NO2 | No | N/A | 1.0 | No | 2.5 | | DT3,
DT3B | Crown Street,
Cockermouth | Kerbside | 311652 | 530658 | NO2 | No | 0.0 | 0.5 | No | 2.5 | | DT4,
DT4B | Main Street,
Keswick | Roadside | 326419 | 523602 | NO2 | No | 4.0 | 1.5 | No | 2.5 | | DT5,
DT5B | Curzon Street,
Maryport | Kerbside | 303778 | 536534 | NO2 | No | 5.0 | 1.0 | No | 2.5 | | DT6,
DT6B | Ramsay Brow,
Workington | Kerbside | 300588 | 528682 | NO2 | No | 0.0 | 1.0 | No | 2.5 | | DT7,
DT7B | King Street,
Wigton | Kerbside | 325508 | 548419 | NO2 | No | 2.0 | 1.0 | No | 2.5 | | DT8,
DT8B | Main Road,
High Harrington | Roadside | 299591 | 525545 | NO2 | No | 0.0 | 2.0 | No | 2.5 | | DT9,
DT9B | Lawson Street,
Aspatria | Kerbside | 315299 | 542145 | NO2 | No | 0.0 | 1.0 | No | 2.5 | | DT10,
DT10B | South Street,
Cockermouth | Kerbside | 312091 | 530547 | NO2 | No | 8.7 | 0.5 | No | 2.5 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|---|---------------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | DT11,
DT11B | Penrith Road,
Keswick | Kerbside | 327949 | 523764 | NO2 | No | 7.0 | 1.0 | No | 2.5 | | DT12,
DT12B | Northside
Primary School,
Northside | Kerbside | 299939 | 529709 | NO2 | No | 8.0 | 1.0 | No | 2.5 | | DT15,
DT15B | Eden Street
Silloth | Industrial | 310949 | 553517 | NO2 | No | 2.0 | 0.5 | No | 2.5 | | DT16,
DT16B | Main Road
Seaton | Kerbside | 301765 | 530720 | NO2 | No | 6.1 | 1.0 | No | 2.5 | | DT17,
DT17B | South End
Street Wigton | Urban
Background | 325568 | 547874 | NO2 | No | 2.9 | 3.1 | No | 2.5 | | DT18,
DT18B | West Street
Aspatria | Roadside | 314286 | 541751 | NO2 | No | 15.0 | 2.0 | No | 2.5 | | DT19,
DT19B | Marvejols Park
Cockermouth | Suburban | 311391 | 529810 | NO2 | No | 4 | 1 | No | 2.5 | | DT20,
DT20B | Eaglesfield
Street
Marypont | Urban
Background | 303720 | 536702 | NO2 | No | 3 | 0 | No | 2.5 | | N1 | 55/56 Lowther
St, Whitehaven | Urban Centre | 297305 | 518185 | NO2 | NO | 2.0 | 0.0 | No | 2.5 | | N2 | Police Station,
Scotch St,
Whitehaven | Urban Centre | 297515 | 518070 | NO2 | NO | 4.0 | 1.0 | No | 2.5 | | N3 | Fire Station,
Hensingham | Urban
Background | 299020 | 517245 | NO2 | NO | 20.0 | 20.0 | No | 2.5 | | N4 | 116 Holborn Hill,
Millom | Urban
Background | 316725 | 480340 | NO2 | NO | 1.0 | 1.0 | No | 2.5 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? |
Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|---|---------------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N5 | Aldby Grove,
Cleator Moor | Urban
Background | 302260 | 514890 | NO2 | NO | 0.0 | 2.0 | No | 2.5 | | N6 | White House,
Strand St,
Whitehaven | Urban Centre | 297230 | 518155 | NO2 | NO | 4.0 | 2.0 | No | 2.5 | | N7 | Tourist Info, Main
St, Egremont | Urban Centre | 301095 | 510930 | NO2 | NO | 5.0 | 3.0 | No | 2.5 | | N8 | Presbytery, St
Bridgets Ln,
Egremont | Urban
Background | 300895 | 510695 | NO2 | NO | 0.0 | 10.0 | No | 2.5 | | N9 | Primary School,
Ennerdale Bridge | Rural | 307000 | 515855 | NO2 | NO | 0.0 | 2.0 | No | 2.5 | | N10 | Council Centre,
St Georges Rd,
Millom | Urban Centre | 317310 | 479980 | NO2 | NO | 40.0 | 2.0 | No | 2.5 | | N11 | Opp JPJ, Strand
St, Whitehaven | Urban Centre | 297320 | 518280 | NO2 | NO | 0.0 | 3.0 | No | 2.5 | | N12 | 2 The Crescent,
Thornhill | Suburban | 301225 | 508805 | NO2 | NO | 4.0 | 0.0 | No | 2.5 | | N13 | 4 Holyoak,
Beckermet | Rural | 301975 | 506635 | NO2 | NO | 3.0 | 0.0 | No | 2.5 | | N14 | The Globe, The Square, Gosforth | Urban
Background | 306695 | 503535 | NO2 | NO | 4.0 | 0.0 | No | 2.5 | | N15 | 21 Scafell Close,
Seascale | Urban
Background | 304440 | 501495 | NO2 | NO | 6.0 | 1.0 | No | 2.5 | | N16 | Greendale Guest
House, Wasdale | Rural | 314410 | 505570 | NO2 | NO | 30.0 | 18.0 | No | 2.5 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|--|---------------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N17 | Holmrook
Service Station,
Holmrook | Roadside | 308235 | 499295 | NO2 | NO | 30.0 | 5.0 | No | 2.5 | | N18 | 98 Main St,
Distington | Urban
Background | 300590 | 523220 | NO2 | NO | 0.0 | 2.0 | No | 2.5 | | N19 | Railway Station,
Bootle | Rural | 309345 | 489300 | NO2 | NO | 4.0 | 1.0 | No | 2.5 | | N20 | King's Head,
Bootle | Roadside | 310735 | 488320 | NO2 | NO | 6.0 | 2.0 | No | 2.5 | | N21 | Nr Seascale Hall
Farm, Seascale | Rural | 303995 | 502445 | NO2 | NO | 350.0 | 1.0 | No | 2.5 | | N22 | Trinity Court,
Scotch St,
Whitehaven | Urban Centre | 297440 | 517960 | NO2 | NO | 2.0 | 0.0 | No | 2.5 | | N23 | 2a Main St,
Distington | Roadside | 300885 | 523890 | NO2 | NO | 0.0 | 2.0 | No | 2.5 | | N24 | New Lowther St,
Whitehaven | Urban Centre | 297260 | 518225 | NO2 | NO | 3.0 | 1.0 | No | 2.5 | #### Notes: - (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property). - (2) N/A if not applicable. #### Table A.3 - Annual Mean NO₂ Monitoring Results: Automatic Monitoring (µg m⁻³) | Site ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring Period
(%) ⁽¹⁾ | Valid Data
Capture 2023 (%) | 2019 | 2020 | 2021 | 2022 | 2023 | |---------|-------------------------------|--------------------------------|-----------|--|--------------------------------|------|------|------|------|------| | MMCC | 338195 | 554990 | Roadside | 98.7 | 98.7 | | | | 9.0 | 9.0 | - ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22. - ⊠ Reported concentrations are those at the location of the monitoring site (annualised, as required), i.e. prior to any fall-off with distance correction. - ☑ Where exceedances of the NO₂ annual mean objective occur at locations not representative of relevant exposure, the fall-off with distance concentration has been calculated and reported concentration provided in brackets for 2023. #### Notes: The annual mean concentrations are presented as µg m⁻³. Exceedances of the NO₂ annual mean objective of 40 µg m⁻³ are shown in **bold**. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Table A.4 - Annual Mean NO₂ Monitoring Results: Non-Automatic Monitoring (µg m⁻³) | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring Period
(%) ⁽¹⁾ | Valid Data
Capture 2023 (%) | 2019 | 2020 | 2021 | 2022 | 2023 | |----------------------|-------------------------------|--------------------------------|--------------|--|--------------------------------|------|------|------|------|------| | A1 | 339995 | 557188 | Roadside | 90.4 | 90.4 | 31.7 | 23.3 | 25.5 | 23.6 | 22.1 | | A10 | 340008 | 556842 | Roadside | 80.8 | 8.08 | 36.7 | 24.9 | 30.5 | 28.7 | 28.6 | | A12 | 339935 | 557125 | Roadside | 100 | 100.0 | 28.7 | 20.8 | 24.3 | 22.3 | 20.5 | | A5 | 339758 | 558059 | Roadside | 100 | 100.0 | 31.5 | 21.4 | 25.2 | 23.8 | 21.5 | | A7 | 339526 | 559285 | Roadside | 100 | 100.0 | 20.7 | 14.1 | 17.1 | 15.5 | 14.2 | | A9 | 340028 | 556833 | Roadside | 100 | 100.0 | 32.7 | 23.0 | 26.9 | 26.1 | 24.3 | | B4 | 339434 | 555638 | Roadside | 100 | 100.0 | 38.7 | 28.3 | 32.9 | 29.3 | 28.1 | | B7 | 340205 | 555198 | Roadside | 100 | 100.0 | 38.1 | 27.0 | 30.4 | 28.8 | 26.8 | | C1 | 340216 | 556131 | Roadside | 100 | 100.0 | 27.6 | 19.7 | 22.1 | 22.1 | 20.9 | | C2 | 340069 | 555955 | Urban Centre | 100 | 100.0 | 17.8 | 11.5 | 13.2 | 13.0 | 12.9 | | C3 | 340218 | 555768 | Roadside | 100 | 100.0 | 27.5 | 18.6 | 22.8 | 20.8 | 19.9 | | D12 | 340307 | 555718 | Kerbside | 100 | 100.0 | 32.7 | 20.4 | 24.7 | 23.0 | 23.5 | | D7 | 341593 | 555893 | Roadside | 100 | 100.0 | 28.3 | 20.8 | 24.8 | 22.9 | 21.2 | | E22 | 339834 | 556137 | Roadside | 100 | 100.0 | 31.4 | 22.0 | 24.7 | 24.0 | 22.4 | | E12 | 339225 | 555821 | Roadside | 100 | 100.0 | 33.9 | 24.6 | 29.5 | 25.9 | 27.1 | | E15 | 339091 | 555736 | Roadside | 100 | 100.0 | 29.2 | 21.4 | 26.4 | 22.5 | 22.8 | | E16 | 339141 | 555900 | Roadside | 100 | 100.0 | 32.0 | 22.6 | 27.3 | 24.2 | 23.9 | | E19 | 338953 | 555610 | Roadside | 100 | 100.0 | 31.2 | 22.2 | 29.4 | 25.9 | 24.7 | | E6, E61,
E62 | 339467 | 555974 | Roadside | 100 | 100.0 | | | 10.6 | 9.9 | 9.5 | | E8 | 339516 | 556024 | Roadside | 100 | 100.0 | 42.7 | 31.7 | 36.3 | 33.5 | 34.1 | | F10 | 340600 | 555349 | Roadside | 100 | 100.0 | 34.4 | 25.4 | 29.9 | 25.8 | 25.3 | | F7 | 340708 | 555240 | Roadside | 100 | 100.0 | 35.4 | 24.7 | 31.0 | 26.1 | 25.9 | | F9 | 341099 | 554931 | Kerbside | 100 | 100.0 | 31.4 | 23.6 | 28.9 | 27.1 | 25.6 | | G4 | 336905 | 554036 | Rural | 100 | 100.0 | 12.1 | 8.0 | 9.5 | 10.1 | 8.1 | | H5 | 337643 | 554100 | Roadside | 100 | 100.0 | 14.1 | 10.4 | 12.0 | 11.0 | 10.1 | | H6 | 337962 | 553220 | Roadside | 100 | 100.0 | 10.1 | 8.4 | 8.4 | 7.4 | 6.1 | | H7 | 338282 | 553396 | Roadside | 82.7 | 82.7 | 15.1 | 11.6 | 13.2 | 11.8 | 11.1 | | H8 | 347874 | 561254 | Other | 100 | 100.0 | 6.9 | 4.8 | 5.5 | 5.6 | 4.9 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring Period
(%) ⁽¹⁾ | Valid Data
Capture 2023 (%) | 2019 | 2020 | 2021 | 2022 | 2023 | |----------------------|-------------------------------|--------------------------------|------------------|--|--------------------------------|------|------|------|------|------| | DT1, DT1B | 300721 | 528958 | Kerbside | 100.0 | 100.0 | 16.2 | 13.0 | 13.1 | 11.6 | 11.6 | | DT2, DT2B | 301194 | 528711 | Urban Centre | 92.3 | 92.3 | 25.0 | 21.6 | 21.8 | 22.0 | 22.9 | | DT3, DT3B | 311652 | 530658 | Kerbside | 100.0 | 100.0 | 19.8 | 15.0 | 16.9 | 15.2 | 14.0 | | DT4, DT4B | 326419 | 523602 | Roadside | 100.0 | 100.0 | 25.5 | 18.4 | 21.1 | 21.6 | 19.9 | | DT5, DT5B | 303778 | 536534 | Kerbside | 92.3 | 92.3 | 23.9 | 19.7 | 19.1 | 20.0 | 18.9 | | DT6, DT6B | 300588 | 528682 | Kerbside | 100.0 | 100.0 | 28.5 | 22.4 | 22.3 | 22.9 | 21.0 | | DT7, DT7B | 325508 | 548419 | Kerbside | 100.0 | 100.0 | 23.7 | 19.9 | 20.0 | 19.3 | 17.3 | | DT8, DT8B | 299591 | 525545 | Roadside | 100.0 | 100.0 | 16.2 | 12.6 | 12.5 | 12.5 | 10.1 | | DT9, DT9B | 315299 | 542145 | Kerbside | 100.0 | 100.0 | 16.0 | 13.0 | 12.9 | 12.5 | 11.6 | | DT10, DT10B | 312091 | 530547 | Kerbside | 100.0 | 100.0 | 16.5 | 12.5 | 11.7 | 12.5 | 12.9 | | DT11, DT11B | 327949 | 523764 | Kerbside | 100.0 | 100.0 | 21.7 | 20.2 | 13.1 | 14.8 | 14.1 | | DT12, DT12B | 299939 | 529709 | Kerbside |
63.5 | 63.5 | 12.2 | 10.0 | 9.7 | 11.8 | 12.7 | | DT15, DT15B | 310949 | 553517 | Industrial | 100.0 | 100.0 | | | 8.3 | 7.9 | 7.1 | | DT16, DT16B | 301765 | 530720 | Kerbside | 92.3 | 92.3 | | | 9.0 | 8.8 | 9.3 | | DT17, DT17B | 325568 | 547874 | Urban Background | 100.0 | 100.0 | | | 8.1 | 7.2 | 7.0 | | DT18, DT18B | 314286 | 541751 | Roadside | 100.0 | 100.0 | | | 12.1 | 13.4 | 13.9 | | DT19, DT19B | 311391 | 529810 | Suburban | 92.0 | 92.0 | | | | | 5.5 | | DT20, DT20B | 303720 | 536702 | Urban Background | 92.9 | 92.9 | | | | | 6.2 | | N1 | 297305 | 518185 | Urban Centre | 100.0 | 100.0 | 15.2 | 10.2 | 13.5 | 13.4 | 12.5 | | N2 | 297515 | 518070 | Urban Centre | 100 | 100.0 | 20.9 | 12.2 | 13.6 | 12.0 | 11.8 | | N3 | 299020 | 517245 | Urban Background | 100 | 100.0 | 7.3 | 6.0 | 6.2 | 5.7 | 5.1 | | N4 | 316725 | 480340 | Urban Background | 100 | 100.0 | 9.5 | 5.8 | 6.3 | 6.0 | 5.7 | | N5 | 302260 | 514890 | Urban Background | 75 | 75.0 | 10.0 | 7.4 | 7.9 | 6.9 | 6.9 | | N6 | 297230 | 518155 | Urban Centre | 100 | 100.0 | 17.9 | 12.0 | 11.8 | 12.2 | 11.6 | | N7 | 301095 | 510930 | Urban Centre | 100 | 100.0 | 17.0 | 12.4 | 13.5 | 12.5 | 11.6 | | N8 | 300895 | 510695 | Urban Background | 100 | 100.0 | 6.2 | 5.1 | 5.1 | 4.9 | 4.9 | | N9 | 307000 | 515855 | Rural | 100 | 100.0 | 5.5 | 3.8 | 4.2 | 3.7 | 3.5 | | N10 | 317310 | 479980 | Urban Centre | 92.3 | 92.3 | 9.9 | 7.4 | 8.0 | 7.3 | 6.0 | | N11 | 297320 | 518280 | Urban Centre | 100 | 100.0 | 20.9 | 15.4 | 17.5 | 16.8 | 15.6 | | N12 | 301225 | 508805 | Suburban | 100 | 100.0 | 6.0 | 5.3 | 5.9 | 5.8 | 5.9 | | N13 | 301975 | 506635 | Rural | 100 | 100.0 | 6.1 | 5.4 | 4.9 | 5.0 | 6.4 | | N14 | 306695 | 503535 | Urban Background | 100 | 100.0 | 12.7 | 7.4 | 8.6 | 9.3 | 8.5 | | N15 | 304440 | 501495 | Urban Background | 100 | 100.0 | 5.2 | 4.1 | 3.6 | 3.9 | 4.2 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring Period
(%) ⁽¹⁾ | Valid Data
Capture 2023 (%) | 2019 | 2020 | 2021 | 2022 | 2023 | |----------------------|-------------------------------|--------------------------------|------------------|--|--------------------------------|------|------|------|------|------| | N16 | 314410 | 505570 | Rural | 100 | 100.0 | 3.1 | 2.2 | 2.0 | 2.2 | 2.1 | | N17 | 308235 | 499295 | Roadside | 100 | 100.0 | 6.3 | 4.9 | 5.4 | 5.2 | 4.8 | | N18 | 300590 | 523220 | Urban Background | 100 | 100.0 | 8.6 | 7.0 | 7.6 | 7.5 | 6.8 | | N19 | 309345 | 489300 | Rural | 100 | 100.0 | 5.5 | 4.0 | 3.9 | 4.1 | 3.7 | | N20 | 310735 | 488320 | Roadside | 100 | 100.0 | 9.2 | 7.0 | 6.9 | 6.7 | 6.4 | | N21 | 303995 | 502445 | Rural | 100 | 100.0 | 5.5 | 3.8 | 3.7 | 3.6 | 3.1 | | N22 | 297440 | 517960 | Urban Centre | 100 | 100.0 | 13.2 | 9.7 | 11.4 | 10.4 | 9.6 | | N23 | 300885 | 523890 | Roadside | 100 | 100.0 | 17.5 | 13.5 | 14.7 | 14.5 | 15.3 | | N24 | 297260 | 518225 | Urban Centre | 100 | 100.0 | 16.1 | 11.0 | 12.0 | 12.0 | 11.3 | [☑] Diffusion tube data has been bias adjusted. ⊠ Reported concentrations are those at the location of the monitoring site (bias adjusted and annualised, as required), i.e. prior to any fall-off with distance correction. #### Notes: The annual mean concentrations are presented as µg/m³. Exceedances of the NO₂ annual mean objective of 40 µg m-3 are shown in **bold**. NO_2 annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**. Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.1 - Trends in Annual Mean NO₂ Concentrations: Automatic monitoring at Morton Manor Table A.5 - 1-Hour Mean NO₂ Monitoring Results, Number of 1-Hour Means > 200 µg m⁻³ | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data Capture
for Monitoring
Period (%) ⁽¹⁾ | Valid Data
Capture 2023
(%) ⁽²⁾ | 2019 | 2020 | 2021 | 2022 | 2023 | |---------|-------------------------------|--------------------------------|-----------|---|--|------|------|------|------|------| | MMCC | 338195 | 554990 | Roadside | 98.7 | 98.7 | | | | 0 | 0 | #### Notes: Results are presented as the number of 1-hour periods where concentrations greater than 200 µg m⁻³ have been recorded. Exceedances of the NO₂ 1-hour mean objective (200 µg m⁻³ not to be exceeded more than 18 times/year) are shown in **bold**. If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.2 - Trends in Annual Mean NO₂ Concentrations: Along A7 Figure A.3 - Trends in Annual Mean NO₂ Concentrations: for sites in city centre and within AQMA 2 and AQMA 5 Figure A.4 - Trends in annual mean NO₂: along Wigton Road, Bridge Street and London Road Figure A.5 - Trends in annual mean NO₂: Carlisle Northern Development Route and various other locations Figure A.7 - Trends in annual mean NO₂ concentrations in the former council area of Copeland BC Table A.6 - Annual Mean PM₁₀ Monitoring Results (µg m⁻³) | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data Capture
for Monitoring
Period (%) ⁽¹⁾ | Valid Data
Capture 2023
(%) ⁽²⁾ | 2019 | 2020 | 2021 | 2022 | 2023 | |---------|-------------------------------|--------------------------------|-----------|---|--|------|------|------|------|------| | MMCC | 338195 | 554990 | Roadside | 94.5 | 94.5 | | | | 14.3 | 11.8 | ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22. #### Notes: The annual mean concentrations are presented as µg m⁻³. Exceedances of the PM_{10} annual mean objective of 40 $\mu g \ m^{-3}$ are shown in **bold**. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.8 - Trends in Annual Mean PM₁₀ Concentrations Table A.7 - 24-Hour Mean PM₁₀ Monitoring Results, Number of PM₁₀ 24-Hour Means > 50 μg m⁻³ | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data Capture
for Monitoring
Period (%) ⁽¹⁾ | Valid Data
Capture 2023
(%) ⁽²⁾ | 2019 | 2020 | 2021 | 2022 | 2023 | |---------|-------------------------------|--------------------------------|-----------|---|--|------|------|------|------|------| | MMCC | 338195 | 554990 | Roadside | 94.5 | 94.5 | | | | 1 | 0 | #### Notes: Results are presented as the number of 24-hour periods where daily mean concentrations greater than 50 µg m⁻³ have been recorded. Exceedances of the PM₁₀ 24-hour mean objective (50 µg m⁻³ not to be exceeded more than 35 times/year) are shown in **bold**. If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.9 - Trends in Number of 24-Hour Mean PM₁₀ Results > 50 μg m⁻³ Table A.8 - Annual Mean PM_{2.5} Monitoring Results (µg m⁻³) | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data Capture
for Monitoring
Period (%) ⁽¹⁾ | Valid Data
Capture 2023
(%) ⁽²⁾ | 2019 | 2020 | 2021 | 2022 | 2023 | |---------|-------------------------------|--------------------------------|-----------|---|--|------|------|------|------|------| | MMCC | 338195 | 554990 | Roadside | 95.4 | 95.4 | | | | 9.3 | 7.9 | ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22. #### Notes: The annual mean concentrations are presented as µg m⁻³. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.10 - Trends in Annual Mean PM_{2.5} Concentrations ### **Appendix B: Full Monthly Diffusion Tube Results for 2023** Table B.1 - NO₂ 2023 Diffusion Tube Results
(µg m⁻³) (Awaiting confirmation of coordinates for sites in Copeland before progressing. | DT ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean: Annualised and Bias Adjusted CCC = 0.81 ABC = 0.77 CBC = 0.83 | Annual Mean:
Distance
Corrected to
Nearest
Exposure | Comment | |-------|-------------------------------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|--|---|--| | A1 | 339995 | 557188 | 44.1 | 29.8 | 31.6 | 25.7 | 24.0 | 19.5 | 24.4 | 22.5 | 27.7 | 24.7 | | 26.5 | 27.3 | 22.1 | - | | | A10 | 340008 | 556842 | 34.7 | 34.7 | 41.4 | 43.5 | 31.7 | 38.1 | 29.0 | | 35.1 | 34.1 | | 30.2 | 35.3 | 28.6 | - | | | A12 | 339935 | 557125 | 34.7 | 29.9 | 13.8 | 28.8 | 24.9 | 22.5 | 23.9 | 21.1 | 26.3 | 21.9 | 33.0 | 23.5 | 25.3 | 20.5 | - | | | A5 | 339758 | 558059 | 35.2 | 31.9 | 27.0 | 25.2 | 24.1 | 19.2 | 25.0 | 22.5 | 26.9 | 23.4 | 31.2 | 26.5 | 26.5 | 21.5 | - | | | A7 | 339526 | 559285 | 24.8 | 20.9 | 19.4 | 15.4 | 16.0 | 12.1 | 15.4 | 14.2 | 15.9 | 15.4 | 23.6 | 17.2 | 17.5 | 14.2 | - | | | A9 | 340028 | 556833 | 36.8 | 33.6 | 32.2 | 31.0 | 32.1 | 27.2 | 26.3 | 26.2 | 28.6 | 26.6 | 35.2 | 24.6 | 30.0 | 24.3 | - | | | B4 | 339434 | 555638 | 39.9 | 38.8 | 39.9 | 35.2 | 32.3 | 29.2 | 29.4 | 30.1 | 32.5 | 35.1 | 41.1 | 32.8 | 34.7 | 28.1 | - | | | В7 | 340205 | 555198 | 42.1 | 39.1 | 38.0 | 37.2 | 31.4 | 25.7 | 31.1 | 29.5 | 30.9 | 27.7 | 37.2 | 27.8 | 33.1 | 26.8 | - | | | C1 | 340216 | 556131 | 29.9 | 28.5 | 28.6 | 27.0 | 21.4 | 24.5 | 21.9 | 21.5 | 25.3 | 26.3 | 31.1 | 23.9 | 25.8 | 20.9 | - | | | C2 | 340069 | 555955 | 21.2 | 17.1 | 16.8 | 16.2 | 10.5 | 11.2 | 9.6 | 11.0 | 12.3 | 15.3 | 22.2 | 28.3 | 16.0 | 12.9 | - | | | C3 | 340218 | 555768 | 27.5 | 26.1 | 26.8 | 27.5 | 23.7 | 24.4 | 19.9 | 20.9 | 24.0 | 22.8 | 28.7 | 22.0 | 24.5 | 19.9 | - | | | D12 | 340307 | 555718 | 35.9 | 33.1 | 30.1 | 26.9 | 25.7 | 24.3 | 25.4 | 23.7 | 29.8 | 30.1 | 33.1 | 30.5 | 29.0 | 23.5 | - | | | D7 | 341593 | 555893 | 34.0 | 29.7 | 26.8 | 22.7 | 21.9 | 22.2 | 26.4 | 22.4 | 27.1 | 25.8 | 29.4 | 25.2 | 26.1 | 21.2 | - | | | E22 | 339834 | 556137 | 36.0 | 31.0 | 30.0 | 29.1 | 24.5 | 23.8 | 24.8 | 22.2 | 26.6 | 26.3 | 31.5 | 26.9 | 27.7 | 22.4 | - | | | E12 | 339225 | 555821 | 33.8 | 34.3 | 35.9 | 36.5 | 31.6 | 37.1 | 30.6 | 29.2 | 32.8 | 33.9 | 37.1 | 28.0 | 33.4 | 27.1 | - | | | E15 | 339091 | 555736 | 32.0 | 32.0 | 30.4 | 30.5 | 26.6 | 24.8 | 23.1 | 24.2 | 23.5 | 30.8 | 35.1 | 24.5 | 28.1 | 22.8 | - | | | E16 | 339141 | 555900 | 31.8 | 28.9 | 33.3 | 35.0 | 29.8 | 34.1 | 21.6 | 23.9 | 27.5 | 30.0 | 33.3 | 24.5 | 29.5 | 23.9 | - | | | E19 | 338953 | 555610 | 33.4 | 33.2 | 34.8 | 35.6 | 27.8 | 31.0 | 17.0 | 25.1 | 29.1 | 32.7 | 37.4 | 28.2 | 30.4 | 24.7 | - | | | E6 | 339467 | 555974 | 15.1 | 13.5 | 12.6 | 11.4 | 9.7 | 8.8 | 7.9 | 8.2 | 9.5 | 12.7 | 18.6 | 11.9 | - | - | - | Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only | | E61 | 339467 | 555974 | 14.1 | 14.1 | 12.8 | 11.5 | 9.8 | 7.6 | 8.4 | 8.4 | 10.3 | 13.3 | 19.7 | 11.4 | - | - | - | Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only | | E62 | 339467 | 555974 | 14.8 | 13.9 | 13.4 | 11.5 | 9.6 | 8.3 | 8.2 | 8.7 | 9.6 | 12.8 | 19.8 | 12.1 | 11.8 | 9.5 | - | Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only | | DT ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean:
Annualised and
Bias Adjusted
CCC = 0.81
ABC = 0.77
CBC = 0.83 | Annual Mean:
Distance
Corrected to
Nearest
Exposure | Comment | |-------|-------------------------------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|---|---|---| | E8 | 339516 | 556024 | 43.8 | 44.9 | 50.3 | 49.9 | 42.1 | 47.0 | 34.8 | 35.2 | 38.2 | 41.6 | 44.6 | 32.8 | 42.1 | 34.1 | - | | | F10 | 340600 | 555349 | 34.4 | 28.7 | 34.3 | 35.1 | 31.9 | 29.4 | 25.7 | 27.7 | 30.5 | 32.3 | 38.1 | 26.7 | 31.2 | 25.3 | - | | | F7 | 340708 | 555240 | 38.8 | 34.8 | 33.9 | 33.2 | 32.1 | 26.8 | 26.6 | 28.1 | 31.9 | 30.9 | 36.9 | 29.6 | 32.0 | 25.9 | - | | | F9 | 341099 | 554931 | 33.1 | 31.0 | 32.5 | 36.7 | 32.9 | 30.4 | 25.6 | 26.9 | 30.0 | 32.9 | 40.1 | 26.5 | 31.6 | 25.6 | - | | | G4 | 336905 | 554036 | 13.9 | 10.9 | 10.2 | 8.5 | 8.2 | 7.9 | 7.3 | 8.1 | 9.1 | 10.9 | 14.9 | 10.4 | 10.0 | 8.1 | - | | | H5 | 337643 | 554100 | 17.3 | 15.7 | 14.5 | 13.0 | 9.5 | 7.1 | 8.1 | 8.8 | 9.8 | 12.3 | 20.0 | 13.6 | 12.5 | 10.1 | - | | | H6 | 337962 | 553220 | 7.9 | 5.2 | 5.8 | 6.3 | 7.2 | 8.4 | 5.3 | 6.6 | 7.0 | 11.0 | 12.4 | 7.5 | 7.6 | 6.1 | - | | | H7 | 338282 | 553396 | 15.8 | 11.7 | 13.2 | 13.6 | 10.7 | | | 10.0 | 13.8 | 16.7 | 19.8 | 12.0 | 13.7 | 11.1 | - | | | H8 | 347874 | 561254 | 8.7 | 6.7 | 4.8 | 4.6 | 4.7 | 6.3 | 4.5 | 5.5 | 5.4 | 7.1 | 8.1 | 5.6 | 6.0 | 4.9 | - | | | DT1 | 300721 | 528958 | 13.0 | 16.9 | 18.5 | 15.4 | 13.1 | 14.2 | 9.2 | 11.0 | 13.4 | 15.4 | 19.4 | 14.4 | - | - | - | Duplicate Site with DT1 and DT1B - Annual data provided for DT1B only | | DT1B | 300721 | 528958 | 18.4 | 19.5 | 18.3 | 15.8 | 13.4 | 16.1 | 10.2 | 10.9 | 13.0 | 17.1 | 20.6 | а | 15.1 | 11.6 | - | Duplicate Site with DT1 and DT1B - Annual data provided for DT1B only | | DT2 | 301194 | 528711 | | 18.6 | 27.7 | | 33.2 | 34.7 | 27.7 | 28.8 | 32.5 | 24.5 | | | - | - | - | Duplicate Site with DT2 and DT2B - Annual data provided for DT2B only | | DT2B | 301194 | 528711 | 35.3 | 34.8 | 27.0 | 28.2 | 32.5 | 32.5 | 27.5 | 26.0 | 27.4 | 29.9 | 30.3 | а | 29.7 | 22.9 | - | Duplicate Site with DT2 and DT2B - Annual data provided for DT2B only | | DT3 | 311652 | 530658 | 16.4 | 21.4 | 18.9 | а | 18.1 | 20.3 | 14.0 | 18.0 | 18.5 | 12.0 | 24.1 | 16.8 | - | - | - | Duplicate Site with DT3 and DT3B - Annual data provided for DT3B only | | DT3B | 311652 | 530658 | 7.0 | 21.7 | 24.5 | 18.6 | 18.8 | 21.3 | 11.1 | 16.4 | 18.9 | 17.1 | 26.3 | 19.1 | 18.2 | 14.0 | - | Duplicate Site with DT3 and DT3B - Annual data provided for DT3B only | | DT4 | 326419 | 523602 | 28.5 | 25.5 | 27.4 | 26.3 | 25.4 | 24.2 | 23.1 | а | 26.4 | 26.5 | 21.7 | 23.7 | - | - | - | Duplicate Site with DT4 and DT4B - Annual data provided for DT4B only | | DT4B | 326419 | 523602 | 24.4 | 26.8 | 27.8 | 25.1 | 26.2 | 24.9 | 25.3 | 29.2 | 26.0 | 26.3 | 27.8 | 23.3 | 25.9 | 19.9 | - | Duplicate Site with DT4 and DT4B - Annual data provided for DT4B only | | DT5 | 303778 | 536534 | 27.1 | 31.3 | 25.5 | а | 22.8 | 24.9 | 18.0 | 21.5 | 25.4 | 25.0 | 26.6 | 23.0 | - | - | - | Duplicate Site with DT5 and DT5B - Annual data provided for DT5B only | | DT5B | 303778 | 536534 | 26.8 | 29.7 | 24.4 | а | 23.4 | 20.4 | 20.6 | 21.0 | 23.2 | 25.5 | 29.1 | 24.7 | 24.5 | 18.9 | - | Duplicate Site with DT5 and DT5B - Annual data provided for DT5B only | | DT6 | 300588 | 528682 | 33.9 | 36.9 | 33.5 | 17.0 | 25.9 | 30.7 | 28.0 | 19.7 | 32.4 | 24.0 | 14.3 | 26.6 | - | - | - | Duplicate Site with DT6 and DT6B - Annual data provided for DT6B only | | DT6B | 300588 | 528682 | 28.3 | 34.8 | 32.9 | 31.1 | 26.9 | 26.9 | 25.5 | 23.8 | 29.7 | 30.5 | 12.6 | 28.9 | 27.3 | 21.0 | - | Duplicate Site with DT6 and DT6B - Annual data provided for DT6B only | | DT ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean: Annualised and Bias Adjusted CCC = 0.81 ABC = 0.77 CBC = 0.83 | Annual Mean:
Distance
Corrected to
Nearest
Exposure | Comment | |-----------|-------------------------------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|--|---|---| | DT7 | 325508 | 548419 | 19.8 | 26.8 | 26.7 | 20.1 | 24.3 | 21.4 | 15.9 | 21.7 | 19.6 | 10.4 | 29.4 | 28.2 | - | - | - | Duplicate Site with DT7 and DT7B - Annual data provided for DT7B only | | DT7B | 325508 | 548419 | 27.8 | 30.0 | 24.2 | а | 23.1 | 18.4 | 18.7 | 26.5 | 20.8 | 23.2 | 24.4 | 16.3 | 22.4 | 17.3 | - | Duplicate Site with DT7 and DT7B - Annual data provided for DT7B only | | DT8 | 299591 | 525545 | 14.1 | 8.0 | 18.2 | 14.2 | 10.5 | 15.8 | 8.7 | 14.0 | 9.8 | 18.3 | а | 13.4 | - | - | - | Duplicate Site with DT8 and DT8B - Annual data provided for DT8B only | | DT8B | 299591 | 525545 | 14.2 | 7.9 | 14.8 | 13.1 | 10.6 | 15.1 | 8.1 | 14.0 | 14.4 | 21.0 | 12.1 | 12.4 | 13.1 | 10.1 | - | Duplicate Site with DT8 and DT8B - Annual data provided for DT8B only | | DT9 | 315299 | 542145 | 17.8 | 19.0 | 16.6 | 14.3 | 15.2 | 12.6 | 12.2 | 13.7 | 15.1 | 11.3 | 17.8 | 13.3 | - | - | - | Duplicate Site with DT9 and DT9B - Annual data provided for DT9B only | | DT9B | 315299 | 542145 | 18.6 | 19.4 | 15.5 | 12.1 | 16.1 | 15.5 | 10.5 | 12.8 | 15.1 | 12.8 | 19.2 | 14.4 | 15.0 | 11.6 | - | Duplicate Site with DT9 and
DT9B - Annual data provided
for DT9B only | | DT10 | 312091 | 530547 | 18.5 | 15.4 | 17.6 | 12.2 | 13.9 | 14.4 | 10.4 | 13.1 | 15.0 | 21.7 | 27.7 | 16.7 | - | - | - | Duplicate Site with DT10 and DT10B -
Annual data provided for DT10B only | | DT10
B | 312091 | 530547 | 19.2 | 17.2 | 21.8 | 16.3 | 15.3 | 15.4 | 10.3 | 13.1 | 15.1 | 22.6 | 23.7 | 16.9 | 16.8 | 12.9 | - | Duplicate Site with DT10 and DT10B - Annual data provided for DT10B only | | DT11 | 327949 | 523764 | 14.2 | 17.0 | 18.8 | 20.4 | 16.3 | 22.0 | 14.0 | 17.4 | 21.4 | 18.9 | 22.3 | 15.2 | - | - | - | Duplicate Site with DT11 and DT11B - Annual data provided for DT11B only | | DT11
B | 327949 | 523764 | 15.2 | 17.7 | 19.2 | 17.5 | 15.7 | а | 13.5 | 18.4 | 19.1 | 22.7 | 25.2 | 14.9 | 18.3 | 14.1 | - | Duplicate Site with DT11 and DT11B - Annual data provided for DT11B only | | DT12 | 299939 | 529709 | 14.9 | 16.5 | а | 23.6 | а | а | 20.9 | а | 13.3 | 11.0 | 30.5 | 13.1 | - | - | - | Duplicate Site with DT12 and DT12B - Annual data provided for DT12B only | | DT12
B | 299939 | 529709 | 14.5 | 14.9 | а | 26.6 | а | а | 21.1 | а | 10.6 | 10.2 | 32.1 | 11.2 | 17.8 | 12.7 | - | Duplicate Site with DT12 and DT12B - Annual data provided for DT12B only | | DT15 | 310949 | 553517 | 4.4 | 13.9 | 12.7 | 13.8 | 5.3 | 5.0 | 8.4 | а | 10.3 | 8.7 | 12.4 | 9.6 | - | - | - | Duplicate Site with DT15 and DT15B - Annual data provided for DT15B only | | DT15
B | 310949 | 553517 | 4.1 | 12.9 | 10.5 | 11.0 | 5.0 | 5.9 | 2.4 | 10.1 | 9.5 | 11.0 | 14.6 | 10.1 | 9.2 | 7.1 | - | Duplicate Site with DT15 and DT15B - Annual data provided for DT15B only | | DT16 | 301765 | 530720 | 6.1 | 15.4 | 13.2 | а | 10.4 | 11.6 | 9.7 | 8.1 | 11.7 | 11.3 | 22.5 | 5.7 | - | - | - | Duplicate Site with DT16 and DT16B - Annual data provided for DT16B only | | DT16
B | 301765 | 530720 | 7.0 | 14.4 | 14.0 | а | 10.9 | 12.2 | 11.6 | 9.5 | 12.6 | 13.0 | 23.0 | 10.7 | 12.0 | 9.3 | - | Duplicate Site with DT16 and DT16B - Annual data provided for DT16B only | | DT17 | 325568 | 547874 | 3.8 | 10.5 | 9.3 | 12.3 | 7.9 | 9.1 | 5.3 | 7.0 | 8.5 | 12.0 | 12.9 | 8.7 | - | - | - | Duplicate Site with DT17 and DT17B - Annual data provided for DT17B only | | DT17
B | 325568 | 547874 | 4.7 | 10.4 | 11.7 | 10.2 | 7.0 | 7.9 | 5.8 | 6.7 | 9.0 | 12.6 | 14.7 | 9.6 | 9.1 | 7.0 | - | Duplicate Site with DT17 and DT17B - Annual data provided for DT17B only | | DT ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean: Annualised and Bias Adjusted CCC = 0.81 ABC = 0.77 CBC = 0.83 | Annual Mean:
Distance
Corrected to
Nearest
Exposure | Comment | |-----------|-------------------------------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|--|---|--| | DT18 | 314286 | 541751 | 11.4 | 20.7 | 20.0 | 10.9 | 16.6 | 20.9 | 14.7 | 18.6 | 18.9 | 19.2 | 21.4 | 17.0 | - | - | - | Duplicate Site with DT18 and DT18B - Annual data provided for DT18B only | | DT18
B | 314286 | 541751 | 12.0 | 23.5 | 21.8 | 15.0 | 18.7 | 20.2 | 14.0 | 17.4 | 19.1 | 19.9 | 21.8 | 18.2 | 18.0 | 13.9 | - | Duplicate Site with DT18 and
DT18B - Annual data provided
for DT18B only | | DT19 | 311391 | 529810 | 7.2 | 10.9 | 7.2 | 7.2 | 5.2 | 4.9 | 3.9 | 6.1 | 8.0 | а | 12.3 | 6.8 | - | - | - | Duplicate Site with DT19 and DT19B - Annual data provided for DT19B only | | DT19
B | 311391 | 529810 | 5.9 | 9.9 | 7.2 | 6.1 | 5.0 | 5.1 | 3.5 | 5.9 | 7.4 | а | 13.0 | 8.2 | 7.1 | 5.5 | - | Duplicate Site with DT19 and
DT19B - Annual data provided
for DT19B only | | DT20 | 303720 | 536702 | а | 10.3 | 11.1 | 6.6 | 9.3 | 8.9 | 4.3 | 5.5 | 6.5 | 8.8 | 10.4 | 7.9 | - | - | - | Duplicate Site with DT20 and DT20B - Annual data provided for DT20B only | | DT20
B | 303720 | 536702 | а | 9.6 | 8.0 | 7.3 | 8.1 | 9.4 | 4.1 | 5.2 | 7.1 | 8.3 | 10.9 | 8.3 | 8.0 | 6.2 | - | Duplicate Site with DT20 and DT20B - Annual data provided for DT20B only | | N1 | 297305 | 518185 | 14.3 | 15.7 | 15.2 | 17.5 | 15.4 | 15.1 | 10.5 | 14.2 | 13.8 | 15.0 | 20.3 | 14.2 | 15.1 | 12.5 | - | | | N2 | 297515 | 518070 | 15.5 | 16.4 | 14.6 | 15.8 | 12.8 | 13.4 | 10.8 | 12.6 | 13.0 | 14.8 | 17.3 | 13.4 | 14.2 | 11.8 | - | | | N3 | 299020 | 517245 | 6.8 | 7.4 | 7.5 | 5.9 | 4.9 | 5.4 | 4.9 | 4.6 | 5.7 | 6.3 | 8.2 | 6.1 | 6.1 | 5.1 | - | | | N4 | 316725 | 480340 | 9.8 | 9.6 | 8.0 | 6.2 | 5.7 | 5.6 | 4.5 | 4.2 | 5.5 | 7.3 | 8.0 | 8.1 | 6.9 | 5.7 | - | | | N5 | 302260 | 514890 | а | 9.7 | 9.2 | 8.1 | 8.0 | 7.7 | 6.3 | а | а | 7.9 | 9.7 | 8.4 | 8.3 | 6.9 | - | | | N6 | 297230 | 518155 | 15.7 | 17.6 | 17.6 | 13.9 | 10.6 | 13.0 | 10.9 | 7.2 | 14.1 | 15.4 | 18.2 | 13.9 | 14.0 | 11.6 | - | | | N7 | 301095 | 510930 | 15.5 | 17.9 | 17.0 | 15.0 | 12.3 | 11.9 | 9.8 | 10.9 | 13.6 | 13.7 | 17.3 | 12.7 | 14.0 | 11.6 | - | | | N8 | 300895 | 510695 | 7.2 | 6.8 | 6.2 | 4.9 | 3.7 | 3.8 | 3.2 | 11.4 | 4.5 | 5.1 | 8.3 | 5.9 | 5.9 | 4.9 | - | | | N9 | 307000 | 515855 | 5.0 | 5.2 | 4.9 | 4.5 | 3.4 | 4.3 | 3.1 | 3.5 | 3.3 | 4.2 | 5.5 | 4.2 | 4.3 | 3.5 | - | | | N10 | 317310 | 479980 | 10.9 | 10.9 | 8.8 | 9.0 | 6.7 | 6.8 | 4.4 | 3.2 | 5.8 | 8.0 | 5.6 | а | 7.3 | 6.0 | - | | | N11 | 297320 | 518280 | 19.1 | 25.3 | 23.8 | 22.9 | 17.0 | 15.9 | 16.8 | 6.0 | 18.8 | 21.2 | 21.1 | 17.5 | 18.8 | 15.6 | - | | | N12 | 301225 | 508805 | 8.7 | 8.4 | 7.5 | 5.9 | 4.9 | 5.2 | 3.3 | 16.2 | 5.3 | 5.9 | 7.1 | 6.8 | 7.1 | 5.9 | - | | | N13 | 301975 | 506635 | 37.0 | 6.8 | 6.6 | 5.4 | 4.7 | 4.5 | 2.9 | 4.2 | 4.7 | 4.5 | 6.7 | 4.8 | 7.7 | 6.4 | - | | | N14 | 306695 | 503535 | 12.8 | 11.6 | 11.0 | 10.9 | 10.6 | 11.5 | 8.6 | 3.3 | 10.8 | 10.8 | 11.0 | 9.5 | 10.2 | 8.5 | - | | | N15 | 304440 | 501495 | 5.4 | 5.7 | 5.2 | 4.4 | 6.4 | 4.3 | 2.5 | 8.4 | 4.3 | 4.0 | 5.3 | 5.0 | 5.1 | 4.2 | - | | | N16 | 314410 | 505570 | 2.4 | 2.8 | 2.6 | 2.3 | 1.9 | 2.8 | 2.5 | 2.6 | 2.7 | 2.5 | 2.8 | 2.9 | 2.6 | 2.1 | - | | | N17 | 308235 | 499295 | 7.9 | 6.6 | 6.4 | 5.9 | 7.8 | 5.0 | 4.2 | 1.8 | 5.0 | 5.0 | 8.2 | 5.2 | 5.8 | 4.8 | - | | | N18 | 300590 | 523220 | 10.7 | 11.1 | 9.8 | 8.0 | 4.6 | 7.9 | 6.6 | 7.1 | 8.1 | 7.9 | 9.6 | 7.3 | 8.2 | 6.8 | - | | | N19 | 309345 | 489300 | 5.9 | 6.4 | 5.3 | 4.2 | 3.7 | 3.8 | 3.1 | 3.1 | 3.8 | 4.6 | 5.7 | 4.4 | 4.5 | 3.7 | - | | | DT ID | Ref | Y OS Grid
Ref
(Northing) | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean: Annualised and Bias Adjusted CCC = 0.81 ABC = 0.77 CBC = 0.83 | Annual Mean: Distance Corrected to Nearest Exposure | Comment | |-------|--------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|--|---|---------| | N20 | 310735 | 488320 | 9.2 | 10.9 | 9.9 | 6.5 | 6.8 | 6.2 | 6.3 | 5.7 | 7.5 | 6.7 | 8.9 | 7.3 | 7.7 | 6.4 | - | | | N21 | 303995 | 502445 | 4.8 | 0.9 | 8.1 | 3.6 | 3.3 | 3.8 | 2.9 | 2.6 | 3.3 | 3.2 | 4.0 | 3.9 | 3.7 | 3.1 | - | | | N22 | 297440 | 517960 | 14.1 | 15.0 | 12.7 | 11.1 | 9.1 | 9.1 | 7.1 | 8.9 | 9.9 | 13.5 | 16.6 | 11.8 | 11.6 | 9.6 | - | | | N23 | 300885 | 523890 | 21.3 | 17.3 | 19.7 | 21.2 | 20.9 | 22.4 | 14.7 | 15.7 | 15.3 | 17.3 | 20.4 | 15.4 | 18.5 | 15.3 | - | | | N24 | 297260 | 518225 | 12.3 | 17.7 | 17.8 | 14.0 | 9.6 | 9.8 | 10.6 | 10.1 | 13.2 | 18.2 | 17.1 | 13.0 | 13.6 | 11.3 | - | | [☐] Local bias adjustment factor used. #### Notes: Exceedances of the NO₂ annual mean objective of 40 µg m-3 are shown in **bold**. NO₂ annual means exceeding 60 µg m⁻³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**. See Appendix C for details on bias adjustment and annualisation. **[☒]** National bias adjustment factor used. [☐] Where applicable, data has been distance corrected for relevant exposure in the final column. [☑] Cumberland Council confirm that all 2023 diffusion tube data has been uploaded to the Diffusion Tube Data Entry System. # Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC # New or Changed Sources Identified Within Cumberland Council During 2023 Cumberland Council has not identified any new sources relating to air quality within the reporting year of 2023. # Additional Air Quality Works Undertaken by Cumberland Council During 2023 Cumberland Council has not completed any additional works within the reporting year of 2023. #### **QA/QC** of Diffusion Tube Monitoring As discussed previously Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council (CCC), Allerdale Borough Council (ABC) and Copeland Borough Council (CBC) on 1st April 2023. Each former local authority used a different combination of analytical laboratory or NO₂ absorbent for the analysis of the diffusion tubes. This section provides detail relating to the following aspects of non-automatic monitoring using diffusion tubes. #### Diffusion tube supplier The analytical laboratories and NO₂ absorbent used in 2023 are listed below: | Former local authority | Analytical laboratory | NO ₂ absorbent | |---------------------------|-----------------------|---------------------------| | Carlisle City Council | Gradko | 20 % TEA in water | | Allerdale Borough Council | Socotec | 50% TEA in Acetone | | Copeland Borough Council | Gradko | 50% TEA in Acetone | Both analytical laboratories also participate in the AIR-PT analysis scheme¹². This is an independent analytical proficiency-testing scheme, operated by LGC Standards and ¹² LGC. Summary of Laboratory Performance in AIR NO2 Proficiency Testing Scheme (September 2021 – October 2023) at https://laqm.defra.gov.uk/wp-content/uploads/2023/11/LAQM-NO2-Performance-data_Up-to-Oct-2023_V1_Final.pdf supported by the Health and Safety Laboratory (HSL). Defra and the Devolved Administrations advise that diffusion tubes used for Local Air Quality management (LAQM) should be obtained from laboratories that have demonstrated satisfactory performance in the AIR NO₂ PT scheme. Results for recent analytical laboratory performance are summarised below: | AIR PT Round | AIR PT AR053 | AIR PT AR055 | AIR PT AR056 | AIR PT AR058 | AIR PT AR059 | |--------------------------|-----------------------------|----------------------------|-----------------|-----------------------|-----------------------------| | Period | September –
October 2022 | January –
February 2023 | May – June 2023 | July – August
2023 | September –
October 2023 | | Socotec UK Limited | 100% | 100% | 100% | 100% | 100% | | Gradko International Ltd | 100% | 100% | 100% | 100% | 100% | For those reporting periods in 2023 for which Gradko and Socotec reported results all were considered satisfactory (based on z-scores less than or equal to 2). #### **Diffusion Tube Calendar** The diffusion tube calendars used by the CCC and CBC matched the LAQM calendar. The calendar for ABC did not deviate from significantly from the LAQM calendar. The tube on and off dates are provided below: | Month | Tube On | Tube Off | |-------|------------|------------| | Jan | 04/01/2023 | 30/01/2023 | | Feb | 30/01/2023 | 27/02/2023 | | Mar | 27/02/2023 | 05/04/2023 | | Apr | 05/04/2023 | 03/05/2023 | | May | 03/05/2023 | 01/06/2023 | | Jun | 01/06/2023 | 03/07/2023 | | Jul | 03/07/2023 | 02/08/2023 | | Aug | 02/08/2023 | 06/09/2023 | | Sep | 06/09/2023 | 04/10/2023 | | Oct | 04/10/2023 | 02/11/2023 | | Nov | 02/11/2023 | 06/12/2023 | | Dec | 06/12/2023 | 03/01/2024 | #### **Diffusion Tube Annualisation** Only one site, Northside Primary School (DT12) required annualisation of the annual mean concentration. The annualisation factor and annualisation simple annual mean is presented in Table C.1 Table C.1 – Annualisation Summary (concentrations presented in µg m⁻³) | Diffusio
n Tube
ID | Annualisation
Factor
Blackpool
Marton | Annualisation
Factor
Carlisle
Morton A595 | Annualisation
Factor
Newcastle
Centre | Average
Annualisation
Factor | Raw Data
Simple
Annual
Mean (µg
m ⁻³) | Annualised
Data Simple
Annual Mean
(µg m ⁻³) | Comments | |--------------------------|--|--|--|------------------------------------|---|---|--| | DT12 | 0.8822 | 0.9174 | 0.9738 | 0.9245 | - | - | Duplicate Site with DT12 and | | DT12B | 0.8822 | 0.9174 | 0.9738 | 0.9245 | 17.8 | 16.5 | DT12B -
Annual data
provided for
DT12B only | #### **Diffusion Tube Bias Adjustment Factors** The diffusion tube data presented within the 2023 ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG22 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO_x/NO₂ continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method. A summary of bias adjustment factors used by the former local authorities over the past five years is presented in Table C.2. **Table C.2 – Bias Adjustment Factor** | Former
local
authority | Laboratory/Absorbent | Monitoring
Year | Local or
National | If National,
Version of
National
Spreadsheet | Adjustment
Factor | |------------------------------|----------------------------|--------------------|----------------------|---|----------------------| | CCC | Gradko 20 % TEA in water | 2023 | National | 03/24 | 0.81 | | CCC | Gradko 20 % TEA in water | 2022 | National | 03/23 | 0.83 | | CCC | Gradko 20 % TEA in water | 2021 | National | 06/22 | 0.84 | | CCC | Gradko 20 % TEA in water | 2020 | National | 06/21 | 0.81 | | CCC | Gradko 20 % TEA in water | 2019 | National | 03/20 | 0.93 | | ABC | Socotec 50% TEA in Acetone | 2023 | National | 03/24 | 0.77 | | ABC | Socotec 50% TEA in Acetone | 2022 | National | 03/23 | 0.76 | | Former
local
authority | Laboratory/Absorbent | Monitoring
Year | Local or
National | If National,
Version of
National
Spreadsheet | Adjustment
Factor | |------------------------------|----------------------------|--------------------|----------------------|---|----------------------| | ABC | Socotec 50% TEA in Acetone | 2021 | National | 03/22 | 0.78 | | ABC | Socotec 50% TEA in Acetone | 2020 | National | 03/21 | 0.77 | | ABC | Socotec 50% TEA in Acetone | 2019 | National | 03/20 | 0.75 | | CBC | Gradko 50% TEA in Acetone | 2023 | National | 03/24 | 0.83 | | CBC | Gradko 50% TEA in Acetone | 2022 | National | 03/24 ¹³ | 0.82 | | CBC | Gradko 50% TEA in Acetone | 2021 | National | 03/24 ¹⁰ | 0.82 | | CBC | Gradko 50% TEA in Acetone | 2020 | National | 03/21 | 0.82 | | CBC | Gradko 50% TEA in Acetone | 2019 | National | 09/20 | 0.89 | #### **Local Bias Adjustment** A local bias adjustment factor of 0.76 was derived for the collocated triplicate tubes and the automatic analyser at Morton Community Centre. The bias adjustment was carried out using the NO₂ data processing tool¹⁴ and the summary statistics are provided in Table C.1. Table C.1 – Local Bias Adjustment Summary | | Local Bias Adjustment
(Morton Community Centre) | |--------------------------------|--| | Periods used to calculate bias | 12 | | Bias Factor A | 0.76 (0.72 - 0.8) | | Bias Factor B | 32% (24% - 39%) | | Diffusion Tube Mean (µg/m³) | 11.8 | | Mean CV (Precision) | 3.2% | | Automatic Mean (µg/m³) | 9.0 | | Data Capture | 100% | | Adjusted Tube Mean (µg/m³) | 9 (8 - 9) | | Local bias adjustment factor | 0.76 | ¹³ The 2022 and 2023 ASRs for Copeland Borough Council had not been completed before 2024. Annual averages needed for the five-year trend table (Table A.4) were calculated for this combined ASR for Cumberland Council. The national adjustment factors for the 2021 and 2022 data years were obtained from the national adjustment factor spreadsheet 03/24. ¹⁴ Diffusion tube data processing tool lagm (defra.gov.uk) #### **National Bias Adjustment** The national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method. Cumberland Council have applied national bias adjustment factors of 0.81, 0.77 and 0.83, respectively, for the diffusion tubes measuring in the former local authorities of Carlisle City Council, Allerdale Borough Council and Copeland Borough Council. Screenshots of the respective adjustment spreadsheets are shown in Figure C.1, Figure C.2 and Figure C.3, respectively. Figure C.1 - National bias adjustment spreadsheet (former Carlisle City Council) | National Diffusion Tube | Bias Adju | stment | Fac | ctor Spreadsheet | | | Spreadsl | eet Ver | sion Numb | ег: 03/24 | |---|---------------------------------------|-------------------|---------|--|-------------|------------------|---------------------------|-----------|----------------|-------------| | Follow the steps below <u>in the correct order</u> | | | | | | | | This | spreadshe | et will be | | Data only apply to tubes exposed monthly a | nd are not suitable f | or correctina i | individ | ual short-term monitoring periods | | | | updat | ted at the e | nd of June | | Whenever presenting adjusted data, you sh | | | | | | | | | 2024 | | | This spreadsheet will be updated every few | | | | | urage their | immediate us | e. | | | | | The LAQM Helpdesk is operated on behalf of Def | | | | | | | by the Nationa | I Physic: | al Laborato | ry Origina | | partners AECOM and the National Physical Labor | | animoti ationo t | , Dui 0 | au vonas, ii conjunction wan contract | | | onsultants Ltd | | ar Eustrato | ry. Origini | | Step 1: | Step 2: | Step 3: | | | S | itep 4: | | | | | | 2-1 | Select a Preparation | Select a Year | Wher | e there is only one study for a chosen | combinatio | n vou should | uee the adjust | ment fac | tor ehown | with cauti | | Select the Laboratory that Analyses Your Tubes
from the Drop-Down List | Method from the | from the Drop- | | | | | | | | | | Ironi the Drop-Down List | Drop-Down List | Down List | | Where there is more than one study, t | ise the ove | rail factor' sho | wn in blue at t | ne root o | tne final c | oiumn. | | | of a preparation method is | If a year is not | | | , | | | | | | | If a laboratory is not shown, we have no data for this laboratory. | net shown, we have no data | shown, we have no | If you | have your own co-location study then see | | | | | al Air Quality | Managem | | | or this method at this
laboratory. | data ² | | Helpdesk at LAQ | MHelpdesk@ | bureauveritas.co | om or 0800 0327 | 953 | | | | Analysed By ¹ | Method | Year ⁵ | | | | Diffusion | Automatic | | | Bias | | Allalysed by | Tay vda your relection, choose | Toundayour | Site | | Length
of | Tube Mean | Monitor | | Tube | Adjustm | | | All) from the pop-up list | relection, chapre | Type | Local Authority | Study | Conc. (Dm) | Mean Conc. | Bias (B) | Precision | Factor (| | Ţ | ,T | (All) | .,,,, | | (months) | (μg/m³) | (Cm) (μg/m ³) | | • | (Cm/Dn | | Gradko | 20% TEA in water | 2023 | B | Lancaster City Council | 10 | 35 | 27 | 28.6% | G | 0.78 | | Gradko | 20% TEA in water | 2023 | R | Eastleigh Borough Council | 12 | 33 | 26 | 26.4% | G | 0.79 | | Gradko | 20% TEA in water | 2023 | R | Eastleigh Borough Council | 12 | 22 | 19 | 12.5% | G | 0.89 | | Gradko | 20% TEA in water | 2023 | R | Plymouth City Council | 12 | 35 | 26 | 38.3% | S | 0.72 | | Gradko | 20% TEA in water | 2023 | R | Plymouth City Council | 10 | 39 | 31 | 24.2% | S | 0.80 | | Gradko | 20% TEA in water | 2023 | UC | Belfast City Council | 10 | 26 | 19 | 38.3% | G | 0.72 | | Gradko | 20% TEA in water | 2023 | R | Cheshire West And Chester | 12 | 35 | 32 | 10.0% | G | 0.91 | | Gradko | 20% TEA in water | 2023 | R | Cheshire West And Chester | 10 | 32 | 28 | 14.6% | G | 0.87 | | Gradko | 20% TEA in water | 2023 | R | Dudley Mbc | 12 | 27 | 23 | 17.1/ | G | 0.85 | | Gradko | 20% TEA in water | 2023 | UB | Dudley Mbc | 12 | 19 | 13 | 45.4% | G | 0.69 | | Gradko | 20% TEA in water | 2023 | R | Dudley Mbc | 12 | 40 | 37 | 7.7% | G | 0.93 | | Gradko | 20% TEA in water | 2023 | R | Gateshead Council | 12 | 23 | 20 | 17.7% | G | 0.85 | | Gradko | 20% TEA in water | 2023 | R | Gateshead Council | 11 | 23 | 18 | 26.9% | G | 0.79 | | Gradko | 20% TEA in water | 2023 | R | Gateshead Council | 12 | 27 | 22 | 20.7% | G | 0.83 | | Gradko | 20% TEA in water | 2023 | R | Gateshead Council | 12 | 29 | 23 | 25.9% | G | 0.79 | | Gradko | 20% TEA in water | 2023 | R | Gateshead Council | 12 | 30 | 33 | -7.8% | G | 1.08 | | Gradko | 20% TEA in water | 2023 | KS | Marylebone Road intercomparison | 11 | 45 | 38 | 20.3% | G | 0.83 | | Gradko | 20% TEA in water | 2023 | В | South Holland District Council | 10 | 8 | 7 | 12.4% | G | 0.89 | | Gradko | 20% TEA in water | 2023 | R | Worcestershire | 12 | 12 | 11 | 17.4% | G | 0.85 | | Gradko | 20% TEA in Water | 2023 | R | Ards And North Down Borough Council | 12 | 33 | 21 | 60.2% | G | 0.62 | | Gradko | 20% TEA in Water | 2023 | R | Lisburn & Castlereagh City Council | 11 | 24 | 20 | 22.1% | G | 0.82 | | Gradko | 20% TEA in water | 2023 | | Overall Factor ³ (23 studies) | | | | | Jse | 0.81 | Figure C.2 - National bias adjustment spreadsheet (former Allerdale Borough Council) | National Diffusion Tube | Bias Adiu | stment | Fac | ctor Spreadsheet | | | Spreads | heet Ver | sion Numb | er: 03/24 | | |---|--|--|------------------------------|---|--------------------------------|---|--|----------|---|--|--| | Follow the steps below in the correct order Data only apply to tubes exposed monthly a Whenever presenting adjusted data, you sh This spreadsheet will be updated every few | to show the results
nd are not suitable t
ould state the adjus | of <u>relevant</u> of
for correcting
stment factor u | :o-loca
individ
used a | ition studies
ual short-term monitoring periods
nd the version of the spreadsheet | urage their | immediate us | e. | upda | spreadshe
ted at the e
2024
M Helpdesi | nd of June | | | The LAQM Helpdesk is operated on behalf of Def
partners AECOM and the National Physical Labor | | dministrations I | y Bure | | | eet maintained
by Air Quality C | | | al Laborato | ry. Original | | | Step 1: | Step 2: | Step 3: | tep 3: Step 4: | | | | | | | | | | Select the Laboratory that Analyses Your Tubes
from the Drop-Down List | Select a Preparation Method from the Drop-Down List | Select a Year
from the Drop
Down List | | Where there is only one study for a chosen combination, you should use the adjustment factor
Where there is more than one study, use the overall factor shown in blue at the foot of t | | | | | | | | | If a laboratory is not shown, we have no data for this laboratory. | The preparation action of acti | | | | | | | | | | | | Analysed By | Method Tay vida your relection, choose Sill) from the pop-up list | Year ⁵ Ta unda yaur rolection, chaare (All) | Site
Type | Local Authority | Length of
Study
(months) | Diffusion
Tube Mean
Conc. (Dm)
(μg/m³) | Automatic
Monitor
Mean Conc.
(Cm) (µg/m³) | Bias (B) | Tube
Precision | Bias
Adjustmen
Factor (A)
(Cm/Dm) | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | City Of York Council | 11 | 15 | 12 | 27.9% | G | 0.78 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | R | City Of York Council | 11 | 22 | 17 | 26.8% | G | 0.79 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | B | City Of York Council | 9 | 22 | 17 | 33.7% | G | 0.75 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | R | City Of York Council | 10 | 31 | 25 | 26.1% | G | 0.79 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | Gravesham Borough Council | 12 | 19 | 15 | 25.6% | G | 0.80 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | Gravesham Borough Council | 12 | 23 | 19 | 18.4% | G | 0.84 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | B | Ipswich Borough Council | 9 | 26 | 20 | 33.0% | G | 0.75 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | B | Ipswich Borough Council | 12 | 36 | 27 | 34.3% | G | 0.74 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | B | North East Lincolnshire Council | 12 | 43 | 26 | 61.9% | G | 0.62 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | North East Lincolnshire Council | 10 | 13 | 10 | 29.1% | G | 0.77 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | R | North East Lincolnshire Council | 11 | 24 | 21 | 18.0% | G | 0.85 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | R | Cardiff Council / Shared Regulatory Services | 11 | 41 | 34 | 22.2% | G | 0.82 | | | BOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | Torfaen County Borough Council | 11 | 12 | 9 | 43.9% | G | 0.70 | | | SOCOTEC Didcot | 50% TEA in Acetone | 2023 | R | East Suffolk Council | 12 | 29 | 21 | 38.9% | G | 0.72 | | | SOCOTEC Didcot | 50% TEA in Acetone | 2023 | R | Wrexham County Borough Council | 11 | 17 | 14 | 25.2% | G | 0.80 | | | SOCOTEC Didcot | 50% TEA in Acetone | 2023 | R | Horsham District Council | 12 | 21 | 17 | 23.5% | G | 0.81 | | | SOCOTEC Didcot | 50% TEA in Acetone | 2023 | R | Horsham District Council | 10 | 25 | 17 | 43.5% | G | 0.70 | | | SOCOTEC Didoot | 50% TEA in Acetone | 2023 | R | Horsham District Council | 10 | 23 | 24 | -5.4% | G | 1.06 | | | SOCOTEC Didoot | 50% TEA in Acetone | 2023 | UI | North Lincolnshire Council | 10 | 14 | 11 | 26.2% | G | 0.79 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | R | Bridgend Council | 11 | 32 | 27 | 20.8% | G | 0.83 | | | SOCOTEC Dideot | 50% TEA in acetone | 2023 | R | Cambridge City Council | 12 | 22 | 18 | 24.8% | G | 0.80 | | | 50C0TEC Didcot | 50% TEA in acetone | 2023 | R | Leeds City Council | 10 | 39 | 29 | 32.3/ | G | 0.76 | | | BOCOTEC Didcot | 50% TEA in acetone | 2023 | KS | Leeds City Council | 10 | 30 | 20 | 48.9% | G | 0.67 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | R | Leeds City Council | 12 | 25 | 19 | 30.0% | G | 0.77 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | UC | Leeds City Council | 11 | 26 | 19 | 40.0% | G | 0.71 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 |
KS | Marylebone Road intercomparison | 11 | 53 | 38 | 41.4% | G | 0.71 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | R | Vale Of White Horse District Council | 10 | 22 | 18 | 21.2% | G | 0.83 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | UB | Wirral Council | 11 | 15 | 13 | 16.7% | G | 0.86 | | | SOCOTEC Didoot | 50% TEA in acetone | 2023 | | Overall Factor ³ (28 studies) | | | | | Use | 0.77 | | Figure C.3 - National bias adjustment spreadsheet (former Copeland Council) | National Diffusion Tube | Bias Adju | stment | Fac | ctor Spreadsheet | | | Spreadsl | neet Vers | sion Numb | er: 03/24 | | | |---|--|---|----------------------------|--|--------------------------------|---|--|-----------|---|---|--|--| | Follow the steps below in the correct order Data only apply to tubes exposed monthly a Whenever presenting adjusted data, you sh This spreadsheet will be updated every few | to show the results
nd are not suitable to
ould state the adjus | s of <u>relevant</u> c
for correcting i
stment factor u | o-loca
ndivid
ised a | tion studies
ual short-term monitoring periods
nd the version of the spreadsheet | urage their | immediate us | e. | updal | spreadshe
ted at the ei
2024
MHelpdesh | nd of June | | | | The LAQM Helpdesk is operated on behalf of Def
partners AECOM and the National Physical Labor | | dministrations b | y Bure | | | eet maintained
by Air Quality C | | | al Laborato | ry. Original | | | | Step 1: | Step 2: | Step 3: | | | 5 | itep 4: | | | | | | | | Select the Laboratory that Analyses Your Tubes
from the Drop-Down List | from the Drop-Down List Li | | | | | | | | | | | | | If a laboratory is not shown, we have no data for this laboratory. | or this method is
not shown, we have no data
or this method at this
laboratory. | If a year is not
shown, we have no
data | | | | | | | | | | | | Analysed By ¹ | Method To side yourselection, chaire All) from the pap-up list | Year ⁵ To undo your relection, choose (All) | Site
Type | Local Authority | Length of
Study
(months) | Diffusion
Tube Mean
Conc. (Dm)
(μg/m³) | Automatic
Monitor
Mean Conc.
(Cm) (μg/m³) | Bias (B) | Tube
Precision | Bias
Adjustment
Factor (A)
(Cm/Dm) | | | | Gradko | 50% TEA in acetone | 2023 | UB | City Of London Corporation | 10 | 28 | 22 | 26.3% | G | 0.79 | | | | Gradko | 50% TEA in acetone | 2023 | R | City Of London Corporation | 11 | 36 | 31 | 15.0% | G | 0.87 | | | | Gradko | 50% TEA in acetone | 2023 | R | LB Newham | 12 | 27 | 21 | 28.0% | G | 0.78 | | | | Gradko | 50% TEA in acetone | 2023 | SU | Redcar And Cleveland Borough Council | 12 | 14 | 10 | 48.0% | G | 0.68 | | | | Gradko | 50% TEA in Acetone | 2023 | R | Sandwell Mbc | 12 | 33 | 26 | 27.6% | G | 0.78 | | | | Gradko | 50% TEA in acetone | 2023 | UB | Sandwell Mbc | 11 | 21 | 18 | 15.8% | G | 0.86 | | | | Gradko | 50% TEA in acetone | 2023 | R | Sandwell Mbc | 12 | 23 | 20 | 14.2% | S | 0.88 | | | | Gradko | 50% TEA in Acetone | 2023 | UC | Falkirk Council | 12 | 33 | 29 | 14.9% | G | 0.87 | | | | Gradko | 50% TEA in Acetone | 2023 | UB | Falkirk Council | 12 | 15 | 13 | 8.9% | G | 0.92 | | | | Gradko | 50% TEA in acetone | 2023 | R | London Borough Of Lewisham | 11 | 33 | 27 | 22.7% | G | 0.82 | | | | Gradko | 50% TEA in Acetone | 2023 | R | London Borough Of Merton | 12 | 37 | 31 | 18.5% | G | 0.84 | | | | Gradko | 50% TEA in acetone | 2023 | KS | Marylebone Road intercomparison | 11 | 47 | 38 | 25.7% | G | 0.80 | | | | Gradko | 50% TEA in acetone | 2023 | R | Royal Borough Of Windsor And Maidenhead | 11 | 27 | 23 | 21.6% | G | 0.82 | | | | Gradko | 50% TEA in acetone | 2023 | R | Royal Borough Of Windsor And Maidenhead | 12 | 24 | 24 | 0.6% | G | 0.99 | | | | Gradko | 50% TEA in acetone | 2023 | R | London Borough Of Richmond Upon Thames | 11 | 18 | 16 | 15.6% | G | 0.86 | | | | Gradko | 50% TEA in acetone | 2023 | | Overall Factor ³ (15 studies) | | | | ı | Jse | 0.83 | | | #### **Selection of Appropriate Bias Adjustment Factor** Morton Community Centre is the only location in Cumberland Council where a local bias adjustment factor is calculated. For 2023 the collocated bias adjusted value was calculated to be 0.76 and is less than the value obtained for the national bias adjustment factor (0.81). The national bias adjustment has been chosen so that the bias adjusted NO₂ tends to be conservative. This is in line with all previous ASRs carried out for the former Carlisle City Council. #### NO₂ Fall-off with Distance from the Road Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tool/NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO₂ concentrations corrected for distance are presented in Table B.1. No diffusion tube measurements required distance correction during 2023. #### **QA/QC** of Automatic Monitoring Ricardo provides data management and local site operator (LSO) duties for the automatic monitoring sites within Carlisle. The instrumentation is calibrated every two weeks and a full site service is carried out every six months. The QA/QC is accredited to ISO 17025. All data are ratified to all LAQM reporting requirements. Measurement data are available through UKAIR. #### PM₁₀ and PM_{2.5} Monitoring Adjustment PM₁₀ and PM_{2.5} are measured using BAM 1020 heated instrument. For the PM₁₀ instrument a slope correction factor of 0.9662 is applied. No slope correction is required for the PM_{2.5}. #### **Automatic Monitoring Annualisation** As data capture was greater than 85 % annualisation was not required. #### NO₂ Fall-off with Distance from the Road Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, automatic annual mean NO₂ concentrations corrected for distance are presented in Table A.3. No automatic NO₂ monitoring locations required distance correction during 2023. ### Appendix D: Map(s) of Monitoring Locations and AQMAs Figure D.1 - Map of Non-Automatic Monitoring Site- overview Figure D.2 - Location of diffusion tubes within Cumberland Council (Carlisle Area) #### Key to site codes 45 SCOTLAND RD A10 STANWIX BANK A12 STANWIX BANK CAR PARK Α5 37 KINGSTOWN RD 282 KINGSTOWN RD Α7 BRAMPTON RD Δ9 В4 DALSTON RD 12 CURROCK ST C1 LOWTHER ST C2 TOURIST INFO **DEVONSHIRE ST** D12 POST OFFICE 282 WARWICK RD D7 FINKLE ST E22 E12 3 WIGTON RD E15 22 WIGTON RD E16 JOVIAL SAILOR E19 49 WIGTON RD MORTON MANOR 1 E8 BRIDGE ST 155 BOTCHERGATE F10 F7 24 LONDON RD 129 LONDON RD F9 THE HOBBIT G4 WIGTON RD Н5 PETER LANE Н6 DALSTON RD AIRPORT #### Legend - Morton Manor Community Centre - Diffusion tube Figure D.3 - Location of diffusion tubes within Cumberland Council (in outlying areas of former CCC) Figure D.4 - Location of diffusion tubes within Cumberland Council (Allerdale) #### Key to site codes Hall Park View, Workington DT2 Murray Road, Workington DT3 Crown Street, Cockermouth DT4 Main Street, Keswick DT5 Curzon Street, Maryport Ramsay Brow, Workington DT7 King
Street, Wigton DT8 Main Road, High Harrington DT9 Lawson Street, Aspatria DT10 South Street, Cockermouth Penrith Road, Keswick DT12 Northside Primary School, Northside DT15 Eden Street Silloth DT16 Main Road Seaton DT17 South End Street Wigton DT18 West Street Aspatria DT19 Marvejols Park Cockermouth DT20 Eaglesfield Street Marypont **Cumberland Council** Figure D.5 - Location of diffusion tubes within Cumberland Council (Copeland) #### Key to site codes 55/56 Lowther St, Whitehaven N2 Police Station, Scotch St, Whitehaven N3 Fire Station, Hensingham N4 116 Holborn Hill, Millom Aldby Grove, Cleator Moor N6 White House, Strand St, Whitehaven Tourist Info, Main St, Egremont N8 Presbytery, St Bridgets Ln, Egremont N9 Primary School, Ennerdale Bridge N10 Council Centre, St Georges Rd, Millom N11 Opp JPJ, Strand St, Whitehaven N12 2 The Crescent, Thornhill 4 Holyoak, Beckermet N13 N14 The Globe, The Square, Gosforth N15 21 Scafell Close, Seascale N16 Greendale Guest House, Wasdale N17 Holmrook Service Station, Holmrook N18 98 Main St, Distington N19 Railway Station, Bootle N20 King's Head, Bootle N21 Nr Seascale Hall Farm, Seascale Trinity Court, Scotch St, Whitehaven N23 2a Main St, Distington New Lowther St, Whitehaven AQMA 1: A7 AQMA (revoked) Misty Stainton A10A9 AQMA 1: Brampton Road C2 Cartis D12 AQMA 3: Wigton Road (revoked) B4 A 5: Dalston Road E19 F10 F7AQMA 6: Blake Street E6 **AQMA 2: Currock Street** F9 Rd Denton H Contains OS data © Crown Copyright and database right 2020 1,000 0 500 2,000 Meters Legend Diffusion tubes Revoked AQMAs **Current AQMAs** Figure D.6 - Location of air quality management areas and diffusion tubes Figure D.7 - Location of air quality management areas (zoomed in) # Appendix E: Summary of Air Quality Objectives in England Table E.1 – Air Quality Objectives in England¹⁵ | Pollutant | Air Quality Objective: Concentration | Air Quality
Objective:
Measured as | |--|--|--| | Nitrogen Dioxide (NO ₂) | 200μg m-3 not to be exceeded more than 18 times a year | 1-hour mean | | Nitrogen Dioxide (NO ₂) | 40μg/m³ | Annual mean | | Particulate Matter (PM ₁₀) | 50µg/m³, not to be exceeded more than 35 times a year | 24-hour mean | | Particulate Matter (PM ₁₀) | 40μg/m³ | Annual mean | | Sulphur Dioxide (SO ₂) | 350μg/m³, not to be exceeded more than 24 times a year | 1-hour mean | | Sulphur Dioxide (SO ₂) | 125µg/m³, not to be exceeded more than 3 times a year | 24-hour mean | | Sulphur Dioxide (SO ₂) | 266μg/m³, not to be exceeded more than 35 times a year | 15-minute mean | . $^{^{15}}$ The units are in microgrammes of pollutant per cubic metre of air (µg/m³). ## **Glossary of Terms** | Abbreviation | Description | | |-------------------|---|--| | AQAP | Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values' | | | AQMA | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives | | | ASR | Annual Status Report | | | Defra | Department for Environment, Food and Rural Affairs | | | DMRB | Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways | | | EU | European Union | | | FDMS | Filter Dynamics Measurement System | | | LAQM | Local Air Quality Management | | | NO ₂ | Nitrogen Dioxide | | | NOx | Nitrogen Oxides | | | PM ₁₀ | Airborne particulate matter with an aerodynamic diameter of 10µm or less | | | PM _{2.5} | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less | | | QA/QC | Quality Assurance and Quality Control | | | SO ₂ | Sulphur Dioxide | | #### References - Local Air Quality Management Technical Guidance LAQM.TG22. August 2022. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland. - Local Air Quality Management Policy Guidance LAQM.PG22. August 2022. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland. - Chemical hazards and poisons report: Issue 28. June 2022. Published by UK Health Security Agency - Air Quality Strategy Framework for Local Authority Delivery. August 2023. Published by Defra.