

2025 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management, as amended by the Environment Act 2021

Date: June 2025

Information	Cumberland Details
Local Authority Officer	Mathew Proudfoot
Donortmont	Environmental Health
Department	Communities and Public Protection
Address	Civic Centre, Rickergate, Carlisle, CA3 8QG
Telephone	01228 817000
E-mail	environmentalhealth@carlisle.gov.uk
Report Reference Number	ASR 25
Date	June 2025

Local Responsibilities and Commitment

This ASR was prepared by the Communities and Public Protection Service of Cumberland Council with the support of the Directorate of Places Sustainable Growth and Transport.

This ASR has been signed off by the Director of Public Health.

Colin Cox:

Director of Public Health, Customer and Community Wellbeing

If you have any comments on this ASR please send them to Environmental Health:

Communities and Public Protection at:

Civic Centre, Rickergate, Carlisle, CA3 8QG

01228 817000

Environmentalhealth@cumberland.gov.uk

Executive Summary: Air Quality in Our Area

Air Quality in Cumberland

Breathing in polluted air affects our health and costs the NHS and our society billions of pounds each year. Air pollution is recognised as a contributing factor in the onset of heart disease and cancer and can cause a range of health impacts, including effects on lung function, exacerbation of asthma, increases in hospital admissions and mortality.

Air pollution particularly affects the most vulnerable in society, children, the elderly, and those with existing heart and lung conditions. Low-income communities are also disproportionately impacted by poor air quality, exacerbating health and social inequalities.

Table ES 1 provides a brief explanation of the key pollutants relevant to Local Air Quality Management and the kind of activities they might arise from.

Table ES 1 - Description of Key Pollutants

Pollutant	Description
Nitrogen Dioxide (NO ₂)	Nitrogen dioxide is a gas which is generally emitted from high- temperature combustion processes such as road transport or energy generation.
Sulphur Dioxide (SO ₂)	Sulphur dioxide (SO ₂) is a corrosive gas which is predominantly produced from the combustion of coal or crude oil.
Particulate Matter (PM ₁₀ and PM _{2.5})	Particulate matter is everything in the air that is not a gas. Particles can come from natural sources such as pollen, as well as human made sources such as smoke from fires, emissions from industry and dust from tyres and brakes. PM ₁₀ refers to particles under 10 micrometres. Fine particulate matter or PM _{2.5} are particles under 2.5 micrometres.

On 1st April 2023 Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council, Allerdale Borough Council and Copeland Borough Council. This report continues the collation of air quality data for the combined former authorities.

Air quality has been monitored in Cumberland as part of the local authority review and assessment process since 1996. In addition to nitrogen dioxide, other pollutants measured include particulate matter (both PM₁₀ and PM_{2.5}) and benzene (measured as part of Defra's Non-Automatic Hydrocarbon Network). These continue to be measured in the former Carlisle City Council area. However, as local authorities are no longer required to report benzene concentrations, we are not reporting these in this Annual Status Report.

Actions to Improve Air Quality

Whilst air quality has improved significantly in recent decades, there are some areas where local action is needed to protect people and the environment from the effects of air pollution. Whilst air quality has improved significantly in recent decades, there are some areas where local action is needed to protect people and the environment from the effects of air pollution.

The Environmental Improvement Plan¹ sets out actions that will drive continued improvements to air quality and to meet the new national interim and long-term targets for fine particulate matter (PM_{2.5}), the pollutant of most harmful to human health. The Air Quality Strategy² provides more information on local authorities' responsibilities to work towards these new targets and reduce fine particulate matter in their areas.

The Road to Zero³ details the Government's approach to reduce exhaust emissions from road transport through a number of mechanisms, in balance with the needs of the local community. This is extremely important given that cars are the most popular mode of personal travel and the majority of Air Quality Management Areas (AQMAs) are designated due to elevated concentrations heavily influenced by transport emissions.

Cumberland Council has taken forward a number of measures during the current reporting year, in pursuit of improving local air quality. Key local measures continue to support improvements in local air quality and the City Council continues to work on:

¹ Defra. Environmental Improvement Plan 2023, January 2023

² Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023

³ DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018

- Carlisle Southern Link Road: This will connect Junction 42 of the M6 with the A595 to the west. The route will include new junctions linking existing radial routes into Carlisle and the Garden Village. The 8km route will include bridges over two main railway lines and the Caldew and Petteril rivers, a network of footways and cycleway. This construction work is underway and is scheduled to open to the public in 2025.
- Ongoing work to provide grant funding for home insulation improvement measures and domestic renewable heating options.
- Ongoing schemes to introduce vehicle charging points on council owned land and as part of new private development, including charging provision in all new residential developments.
- Harmonization of existing policies and procedures across Cumberland, to include formal adoption of a Civil Penalty Policy (CPP) for Smoke Control Areas (SCA) across Cumberland and adopting supplementary planning guidance document for Developers and Planners which provides essential information on air quality considerations allowing greater clarity and consistency in the decision making process.

Conclusions and Priorities

Nitrogen dioxide concentrations were generally lower across Cumberland in 2024 compared to 2023. Of the seventy locations where monitoring took place in 2023 and 2024, NO₂ concentrations decreased at forty-six sites and increased at twenty-four. There continues to be no exceedance of the annual objective concentration for NO₂ at locations relevant for human exposure anywhere in Cumberland.

Air Quality Management Areas AQMA 1, AQMA 2 and AQMA 5 were officially revoked in June 2025. Within AQMA 4, NO₂ levels in 2024 dropped to their lowest recorded level 30.9 μg/m³, down from 34.1 μg/m³ in 2023.

Monitoring should continue to ensure the ongoing measures in the AQAP are achieving success.

Cumberland Council's priorities for the coming year are:

- Drive forward on actions identified in the Action Plan.
- Continue to progress development of the Carlisle Southern Link Road

- Promote travel plans and introduction of green spaces for all new housing developments. Continue to work with businesses to promote more widespread use of alternative transport.
- Improve the vehicle charging infrastructure.
- Encourage zero and near zero emission vehicle uptake as part of new residential development.
- Continue to update and progress policy and procedural updates around matters
 of air quality and associated regulations, to ensure harmonisation of services
 across Cumberland.

How to get Involved

There are a number of ways in which the public can get involved with improving air quality:

- Taking part in Green Travel Plan arrangements with their employer.
- Joining local cycle groups and walk to school/work groups.
- The use of sustainable transport options including cycling, walking and the bus.
- Investigate how to improve the energy efficiency at home, including sustainable heating and improved home insulation. Contact Cumberland Council to find out what grants are currently available.
- Consider the available options in relation to zero and near zero emission vehicles.
- Taking part in High Public Interest Permit (HPI) Applications, that fall within the Environmental Permitting Regulations (England & Wales) 2016 (EPR) on Local Authority applications submitted in relation to Part A2 and Schedule 13 SWIP applications, in order to raise evidence-based concerns.

Cumberland Council's website can be used to view all previous air quality review and assessment reports as well as real time monitoring data and advice on how to reduce emissions to air.

Table of Contents

Local Responsibilities and Commitment	i
Executive Summary: Air Quality in Our Area	ii
Air Quality in Cumberland	ii
Actions to Improve Air Quality	iii
Conclusions and Priorities	iv
How to get Involved	V
1 Local Air Quality Management	1
2 Actions to Improve Air Quality	2
2.1 Air Quality Management Areas	
2.2 Progress and Impact of Measures to address Air Quality in Cum Council	berland
2.3 PM _{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations	
Air Quality Monitoring Data and Comparison with Air Quality Obje National Compliance	
3.1 Summary of Monitoring Undertaken	14
3.1.1 Automatic Monitoring Sites	14
3.1.2 Non-Automatic Monitoring Sites	15
3.2 Individual Pollutants	15
3.2.1 Nitrogen Dioxide (NO ₂)	15
3.2.2 Particulate Matter (PM ₁₀)	18
3.2.3 Particulate Matter (PM _{2.5})	19
Appendix A: Monitoring Results	20
Appendix B: Full Monthly Diffusion Tube Results for 2024	47
Appendix C: Supporting Technical Information / Air Quality Monitoring	g Data QA/QC
	53
New or Changed Sources Identified Within Cumberland Council During 2024	53
Additional Air Quality Works Undertaken by Cumberland Council During 2024	53
QA/QC of Diffusion Tube Monitoring	53
Diffusion Tube Annualisation	55
Diffusion Tube Bias Adjustment Factors	56
NO ₂ Fall-off with Distance from the Road	59
QA/QC of Automatic Monitoring	60
PM ₁₀ and PM _{2.5} Monitoring Adjustment	60
Automatic Monitoring Annualisation	
NO ₂ Fall-off with Distance from the Road	61
Appendix D: Map(s) of Monitoring Locations and AQMAs	62
Appendix E: Summary of Air Quality Objectives in England	69

Glossary of Terms	70
References	71

Figures

Figure 2-1 Location of Smoke Control Areas within Cumberland Council	12
Figure 3-1 Automatic montoring data (2006 – 2024)	16
Figure A.1 – Trends in Annual Mean NO ₂ Concentrations: automatic monitoring at Mortor	n
Manor	35
Figure A.2 - Trends in Annual Mean NO ₂ Concentrations: Along A7	37
Figure A.3 - Trends in Annual Mean NO2 Concentrations: for sites in city centre and withi	n
AQMA 2 and AQMA 5	37
Figure A.4 - Trends in annual mean NO ₂ : along Wigton Road, Bridge Street and London	
Figure A.5 - Trends in annual mean NO2: Carlisle Northern Development Route and	
various other locations	38
Figure A.6 - Trends in annual mean NO ₂ concentrations in the former council area of	
	39
Figure A.7 - Trends in annual mean NO ₂ concentrations in the former council area of	
Copeland BC	40
Figure A.8 – Trends in Annual Mean PM ₁₀ Concentrations	42
Figure A.9 – Trends in Number of 24-Hour Mean PM ₁₀ Results > 50 µg m ⁻³	44
Figure A.10 – Trends in Annual Mean PM _{2.5} Concentrations	46
Figure C.1 - National bias adjustment spreadsheet (former Carlisle City Council)	57
Figure C.2 - National bias adjustment spreadsheet (former Allerdale Borough Council)	58
Figure C.3 - National bias adjustment spreadsheet (former Copeland Council)	58
Figure D.1 - Map of Non-Automatic Monitoring Site- overview	62
Figure D.2 - Location of diffusion tubes within Cumberland Council (Carlisle Area)	63
Figure D.3 - Location of diffusion tubes within Cumberland Council (in outlying areas of	
former CCC)	64
Figure D.4 - Location of diffusion tubes within Cumberland Council (Allerdale)	65
Figure D.5 - Location of diffusion tubes within Cumberland Council (Copeland)	66
Figure D.6 - Location of air quality management areas and diffusion tubes	67
Figure D.7 - Location of air quality management areas (zoomed in)	68

Tables

Table 2.1 – Declared Air Quality Management Areas	3
Table 2.2 – Progress on Measures to Improve Air Quality	8
Table A.1 – Details of Automatic Monitoring Sites	.20
Table A.2 – Details of Non-Automatic Monitoring Sites	.21
Table A.3 – Annual Mean NO $_2$ Monitoring Results: Automatic Monitoring ($\mu g \ m^{-3}$)	.27
Table A.4 – Annual Mean NO $_{2}$ Monitoring Results: Non-Automatic Monitoring ($\mu g \ m^{-3}$)	.28
Table A.5 – 1-Hour Mean NO $_2$ Monitoring Results, Number of 1-Hour Means > 200 μg $^{ m m}$	-3
	.36
Table A.6 – Annual Mean PM₁₀ Monitoring Results (µg m⁻³)	.41
Table A.7 – 24-Hour Mean PM_{10} Monitoring Results, Number of PM_{10} 24-Hour Means >	50
µg m ⁻³	43
Table A.8 – Annual Mean PM _{2.5} Monitoring Results (µg m ⁻³)	45
Table B.1 – NO ₂ 2024 Diffusion Tube Results (µg m ⁻³)	.47
Table C.1 – Annualisation Summary (concentrations presented in µg m ⁻³)	.55
Table C.2 – Bias Adjustment Factor	56
Table C.3 – Local Bias Adjustment Calculation	59
Table C.4 – Automatic PM $_{ m 2.5}$ Annualisation Summary (concentrations presented in μg m	⁻³)
	60
Table F.1 – Air Quality Objectives in England	69

1 Local Air Quality Management

This report provides an overview of air quality in Cumberland during 2024. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995), as amended by the Environment Act (2021), and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in order to achieve and maintain the objectives and the dates by which each measure will be carried out. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Cumberland to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England are presented in Table E.1.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 18 months. The AQAP should specify how air quality targets will be achieved and maintained, and provide dates by which measures will be carried out.

A summary of AQMAs declared by Cumberland Council can be found in Table 2.1.

AQMA1, AQMA 2 and AQMA 5 were revoked on 9th June 2025

The table presents a description of the single AQMA that is currently designated within Cumberland Council. Appendix D: Map(s) of Monitoring Locations and AQMAs provides maps of the AQMA and also the air quality monitoring locations in relation to the AQMA.

The air quality objectives pertinent to the current AQMA designation are as follows:

NO₂ annual mean.

Table 2.1 - Declared Air Quality Management Areas

AQMA Name	Date of Declaration	Pollutants and Air Quality Objectives	One Line Description	Is air quality in the AQMA influenced by roads controlled by Highways England?	Level of Exceedance: Declaration	Level of Exceedance: Current Year	Number of Years Compliant with Air Quality Objective	Name and Date of AQAP Publication	Web Link to AQAP
AQMA 1	02/12/2005 Amended 25 th July 2019 Revoked 9 th June 2025	NO ₂ Annual Mean	AQMA 1 Amended 25 th July 2019 to include just 100 m Section along B6264 Brampton Road.	N/A	45.3	24.2	12	Cumberland Council Air Quality Action Plan	https://www.carlisle.gov.uk/Porta ls/0/Documents/Residents/Envir onment/AQAP CCC 2021.pdf?v er=MTwlH1- 2grJugOerj9V9rQ%3d%3d
AQMA 2	26/01/2007 Revoked 9 th June 2025	NO₂ Annual Mean	AQMA 2 Currock Street and the properties immediately to the west of it, between the junction with James St/Water St and Crown St.	N/A	44.6	28.8	14	Cumberland Council Air Quality Action Plan	https://www.carlisle.gov.uk/Porta ls/0/Documents/Residents/Envir onment/AQAP CCC 2021.pdf?v er=MTwlH1- 2grJugOerj9V9rQ%3d%3d
AQMA 3	01/08/2008 Revoked 3 rd July 2019	NO ₂ Annual Mean	AQMA 3 Wigton Road between Crummock Street and Caldewgate roundabout as well as properties on Caldcotes.	N/A	40	N/A	N/A	N/A	N/A
AQMA 4	01/08/2008	NO ₂ Annual Mean	AQMA 4 North side of the A595 at Bridge Street, northbound from the junction with Shaddongate.	YES	43.9	30.9	5	Cumberland Council Air Quality Action Plan	https://www.carlisle.gov.uk/Porta ls/0/Documents/Residents/Envir onment/AQAP_CCC_2021.pdf?v er=MTwlH1- 2grJugOerj9V9rQ%3d%3d
AQMA 5	01/08/2008 Revoked 9 th June 2025	NO ₂ Annual Mean	AQMA 5 Junction of Dalston Road and Junction Street	N/A	48	27.1	9	Cumberland Council Air Quality Action Plan	https://www.carlisle.gov.uk/Portals /0/Documents/Residents/Environm ent/AQAP CCC 2021.pdf?ver=MTw IH1-2grJugOerj9V9rQ%3d%3d
AQMA 6	01/08/2008 Revoked 3 rd July 2019	NO₂ Annual Mean	AQMA 6 London Road and properties on either side near the junction with Blake Street	N/A	43.3	N/A	N/A	N/A	N/A

[☑] Cumberland Council confirm the information on UK-Air regarding their AQMA(s) is up to date.

2.2 Progress and Impact of Measures to address Air Quality in Cumberland Council

Defra's appraisal of last year's ASR concluded that the report was well structured, detailed, and provides the information specified in the Guidance. The following comments were made to help inform future reports and were appropriate a response is provided:

1. The Council have stated their intentions to revoke AQMAs 1, 2 and 5 due to continuous compliance with the relevant AQOs, setting this as a priority for the coming year. This is supported and in line with LAQM Technical Guidance. Progress on the status of this is expected in next year's report.

Response: The AQMAs were revoked on 9th June 2025

2. Cumberland Council should be reminded that the UK Air Defra website still states that the AQMAs are listed under the Carlisle City Council local authority and should update this in the future.

Response: An action to do this has started.

- 3. Good QA/QC has been applied to both the Diffusion Tube and Automatic monitoring data clearly stating adjustment factors, calculation methods (if applicable) and their sources. Justification of the chosen adjustment factor has also been stated clearly. However, to add further clarification to future reports the following is recommended:
 - a. It is visible from screenshots of the National Bias Adjustment Factor Calculations Spreadsheet, but it would be good to specify in text which Socotec lab was used (Didcot or Glasgow).
 - b. It is good practice to use the latest version of the National Bias Adjustment Factor Calculations Spreadsheet (Version 09/24) before submission of an ASR. Version 09/24 produced the same bias adjustment factors as 03/24 for 2023 at each lab so there is no impact on the reported monitoring data for this year's ASR.
 - c. The automatic monitoring Carlisle Morton was used in the annualization of this year's monitoring data, which is an urban traffic site. LAQM.TG22 states the following "continuous monitoring sites used for comparison, where available, should be background (Urban Background, Suburban or Rural) sites to avoid

any very local effects that may occur at Urban Centre, Industrial, Roadside or Kerbside sites."

Response: For the annualisation required for this year, the Carlisle Morton A595 site (roadside) has been replaced by Sunderland Silksworth urban background site.

4. The Council has provided a detailed list of measures to improve air quality, including funding status and progress to date. However, the reductions in emissions from measures have been marked as not calculated, it is recommended that the council qualitatively explains how the measure reduces emissions in this section, i.e. reduced congestion, promotion of air quality awareness, increase in sustainable transport.

Response: A qualitive explanation will be provided this year.

- 5. The Council have made reference to the Public Health Outcomes Framework (PHOF) indicator to give additional context for PM_{2.5} concentrations which is encouraged. To add further clarity the council could add graphs showing the trend in the PHOF indicator in recent years
- 6. The Council have stated clearly what has been accomplished over the recent monitoring year and provided detailed clear priorities for the coming year. This is commended and should be continued in future ASRs.
- 7. Trends in monitoring data are discussed in detail and are specific to key areas within the Council's jurisdiction. It is also clear that the council uses this data to review and update their monitoring network, changing monitoring locations to assess areas of concern. This is encouraging to see.

Cumberland Council has taken forward a number of direct measures during the current reporting year of 2024 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. Thirteen measures are included within Table 2.2, with the type of measure and the progress Cumberland Council have made during the reporting year of 2024 presented. Where there have been, or continue to be, barriers restricting the implementation of the measure, these are also presented within Table 2.2.

More detail on these measures can be found in the respective Action Plans: 'Cumberland Council Air Quality Action Plan 2021 (Carlisle Area) (Revised October 2023)'.

Key completed measures are:

- Improvements to the signalling on Castle Way and Bridge Street was implemented in August 2022. This change prevents vehicles, including HGV's and buses from leaving the Willowholme industrial estate and then being subsequently stopped at the pedestrian crossing on Bridge Street. This has reduced the number of standing starts at this incline in the road.
- Construction work is underway on the Carlisle Southern Link Road. This is
 expected to provide a major improvement on traffic volumes and congestion in the
 city centre. Work will be undertaken to identify any new relevant receptors that may
 be negatively impacted by the new road, through increased traffic volumes.
 Additional monitoring may be undertaken when the road is complete and opened
 for use.

Cumberland Council does not expect any of our measures to be completed over the course of the next reporting year, as many of our measures are ongoing in nature, with no expected completion date. The Carlisle Southern Link Road is scheduled to open to the public in 2025.

Cumberland Council's priorities for the coming year are:

- Drive forward on actions identified in the Action Plan.
- Continue to progress development of the Carlisle Southern Link Road
- Promote travel plans and introduction of green spaces for all new housing developments. Continue to work with businesses to promote more widespread use of alternative transport.
- Improve the vehicle charging infrastructure.
- Increase zero and near zero emission vehicle uptake as part of new residential development.

Cumberland Council worked to implement these measures in partnership with the following stakeholders during 2023:

- Highways department
- Planning department
- Green Spaces department

The principal challenges and barriers to implementation that Cumberland Council anticipates facing are funding restrictions and staff resources to implement measures such as public awareness campaigns.

Progress on some measures has been slower than expected due to restrictions in available funding. Some measures such as the Carlisle Southern Link Road are dependent on external organisations and influences such as inflationary pressure and global events.

Cumberland Council anticipates that the measures stated above and in Table 2.2 will achieve compliance in all our AQMA's.

Table 2.2 – Progress on Measures to Improve Air Quality

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Defra AQ Grant Funding	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
1	Construction of the new Carlisle Southern Link Road (CSLR). This will extend the existing Carlisle Northern Development Route (CNDR). Monitor the air quality impacts of the CSLR and CNDR.	Traffic Management	Other	<2021	2025	Cumberland Council	Cumberland Council and Ministry of Housing, Communities and Local Government	No	Funding is in place	£150 million	Building work is underway	Potential for significant improvement in NO2 levels across the city centre.	Reduced NO2 levels at monitoring locations and within AQMA's.	The CNDR is operational. Monitoring at receptors on new road revealed consistently low NO2 levels. There is evidence of NO2 improvements and traffic reduction in the city centre. Several new cycle links from arterial roads are in place. Construction of the Carlisle Southern Link Road is underway. Environmental Health assisted in the consultation process. Delays were incurred due to rising costs and supply issues caused by global events. Expected to be open to the public in 2025.	The new Carlisle Southern Link Road is part of the wider Garden Village housing project, which is expected to deliver 10'000 new homes. The road would extend the existing CNDR. This would provide a complete bypass around the City Centre with both ends of the route connected to the M6 Motorway.
2	Effective traffic management measures will be implemented to improve traffic flow on the existing road network and in new developments.	Traffic Management	UTC, Congestion management, traffic reduction	2012	Ongoing.	Cumberland Council	Cumberland Council	No. 2022 funding bid failed	Ongoing.	Unknown	Ongoing	Modelling undertaken at AQMA 4 indicates that a 2.7% reduction in NOx would achieve compliance.	Reduced NO2 levels and standing traffic within AQMA's.	Traffic modelling has shown that emissions from diesel vehicles dominate emissions. Emissions factor toolkit has been used to show increased traffic speeds would reduce oxide of nitrogen emissions within Bridge Street AQMA. Work has been carried out to the traffic light sequence in this area to reduce standing start traffic. The latest monitoring data indicates a significant improvement in NO2 levels within the AQMA which are now below the objective level.	Improvements to the signalling on Castle Way and Bridge Street was implemented in August 2022. Early monitoring data shows significant improvement in AQMA 4. A funding bid to make wider improvements to traffic management around Bridge St AQMA including automatic NOx measurements was rejected by Defra.
3	Environmental Health will work alongside the Planning Department to minimise the air quality impacts of new developments.	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	Minimise any negative air quality impacts of new developments	Effective links between EH and Planning. AQIA's submitted where necessary. Early consultation with applicants.	Environmental Health is consulted on all proposed developments which may impact on air quality. Responses are aimed at minimising AQ impacts, particularly within or close to our AQMA's. This includes large residential developments. Recommendations are made for car charging points for all new residential properties.	Environmental Health comment on all potentially polluting developments. The outcome depends on Planning Department and current policy
4	Improvements to passenger transport infrastructure. Sustainable transport will be integrated into major new developments	Transport Planning and Infrastructure	Bus route improvements	2012	Ongoing	Cumberland Council and local public transport providers	Cumberland Council and local public transport providers	No	Ongoing.	Unknown	Ongoing.	Improve sustainable transport	Improved bus service. Increased use of transport provided. Reduced NO2 along main routes	Ongoing improvements to bus services with new shelters and raised kerbs. Plans for large new housing developments include public transport provision and/or sustainable transport options.	Success is dependent on public uptake of sustainable transport options. The council has no real control over the improvement of vehicle fleet.
5	Cycling and walking will be encouraged. Implement new and improved pedestrian and cycle links	Transport Planning and Infrastructure	Cycle network	2012	Ongoing	Cumberland Council	Cumberland Council with various funding bids.	No	Ongoing.	Unknown	Ongoing.	Improve and encourage the use of sustainable transport links	Completion of proposed works and ongoing improvement of the cycle and pedestrian route network.	Ongoing applications for government funding for schemes that aim to improve the existing cycleways, creating new sections of cycle track Extensive plans to increase the cycle path network are now in place. Several new cycleways are now complete. Work has started on a cycle path to connect Cargo village to the CNDR.	Ongoing plans associated with improved pedestrian and cycle connections to the CNDR and CSLR. Funding required to accelerate major improvements.

LAQM Annual Status Report 2025

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Defra AQ Grant Funding	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
6	Travel plans will be required for all new developments that meet the criteria. Existing businesses will be encouraged to implement, monitor and review travel plans.	Promoting Travel Alternatives	Workplace Travel Planning	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	Encourage the use of sustainable transport and raise awareness	Increased number of participant businesses and more widespread use of alternative transport.	All schools within the city now have travel plans. New developments likely to result in increased highway usage must submit a travel plan for approval when making an application.	Difficult to quantify the impact of Travel Plans.
7	The council will continue to provide comprehensive environmental control over emissions from all Part A2 and B Processes located within the local authority area.	Environmental Permits	Other measure through permit systems and economic instruments	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	Minimise air quality impacts from industrial sources	Risk based inspections showing that emission limits are being met and efforts are being made to improve on national objectives.	All processes which fall under part B & A2 processes are permitted by Cumberland Council. No recent enforcement action required in relation to emissions.	Any new applications are considered by Environmental Health as part of the planning consultation process and the environmental permitting procedures.
8	The council will continue to investigate complaints of black smoke and smoke nuisance as well as managing smokeless zones. Enforcement action will be taken as necessary.	Public Information	Other	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	Minimise air quality impacts from domestic burning	Reduction in the number of complaints from members of the public. Reduction in repeat offences.	There is information on our website. Environmental Health provide advice and enforcement as required. Smoke complaints are responded to involving domestic fires, bonfires, trade waste, industrial and dark smoke Advice given to minimise potential for smoke issues and ensure compliance with smokeless zones.	The Air Quality Strategy set out a goal to cut public exposure to particulate matter pollution. The aim is to reduce by half the number of people in the United Kingdom exposed to the WHO guideline concentration of 10 µg m³ by 2025. The measures set out here will contribute to this target.
9	Provision of home improvement grants and energy saving advice to the public.	Public Information	Other	2012	Ongoing	Cumberland Council	Cumberland Council with various funding bids.	No	Ongoing.	Unknown	Ongoing.	Improve the efficiency of domestic heating and raise awareness	Number of properties taking up schemes, resulting in Improved energy efficiency of housing stock.	Cumberland Council Home Improvement Agency is currently delivering Health through Warmth Scheme, supported by the Energy Companies Obligation. This includes boiler upgrades and home insulation. Safe and warm grants are provided by the council to deliver up to £7,500 to enable low income homes to carry out minor repairs and energy efficiency measures to their homes. Work has begun on enforcing the Minimum Energy Efficiency Standards, specifically aimed at private rented sector properties. New energy efficiency grants are now available up to £3000 through council grant scheme. Available schemes are regularly changing and evolving.	Cumberland Council have now revised Housing Renewal Assistance Policy under the Regulatory Reform Order 2002. This covers all grants involving housing and energy efficiency measures.
10	Environmental Health will work alongside the Neighbourhoods and Green Spaces team to implement the effective use of trees and green areas to offset traffic derived emissions.	Public Information	Other	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	Utilise trees and green spaces to improve air quality.	Increase in trees and vegetation in visible locations. Increased public interest.	Cumberland Council continues to manage and maintain trees in parks and green spaces, including some additional planting, of mainly mixed broadleaf species, where necessary. Planting of green areas is an essential part of many new developments, including residential.	Limitations to planting options in busy urban areas. Parks and open spaces do not have significant air quality issues. Green Spaces continue to have a positive public impact.
11	Air Quality considerations to be included in all relevant council policies and strategies.	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	To raise awareness and ensure that air quality is part of decision- making processes.	Increased awareness of air quality issues and consideration given by more council departments.	Included air quality links within most major relevant policies including Local Transport Plan (LTP 3) (2011-26) and The Carlisle District Local Plan (2015-30).	Air Quality considerations are put forward during discussion and consultation stages of policy development.

LAQM Annual Status Report 2025

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Defra AQ Grant Funding	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
12	Promotion of air quality and sustainable transport issues. Air quality information and monitoring data will be provided to the public.	Public Information	via the Internet	2012	Ongoing	Cumberland Council	Cumberland Council	No	Ongoing.	Unknown	Ongoing.	To raise awareness and encourage sustainable choices	Increased public awareness and participation in improving air quality.	New schemes being developed to deliver improved cycling routes and vehicle charging infrastructure. Air quality info and real time monitoring data is available on the website. Monitoring data shows continued improvement in most areas. Cumberland Council is actively supporting and promoting Clean Air Day, utilising social media and our website, as part of the Global Action Plan. Cumberland Council has ongoing projects to cut carbon emissions. These aim to raise ambition to tackle climate change and sharing learning and resources. The public can influence and drive climate action through citizens' juries and other projects, with community groups steering the programme.	Difficult to quantify improvements as a direct result of promotional work or providing monitoring data.
13	Installation of charging points and development of charging network	Promoting Low Emission Transport	Procuring alternative Refuelling infrastructure to promote Low Emission Vehicles, EV recharging, Gas fuel recharging	2023	Ongoing	Cumberland Council	Cumberland Council with various funding bids.	No	Ongoing.	Unknown	Ongoing.	To facilitate the widespread uptake of electric vehicles.	More charging points available	In 2023, Cumberland Council received notification that it had been successful with funding to install up to 900 charging points and develop its strategy ⁴ .	Difficult to quantify improvements as a direct result of providing charging points. The aim is to assist with the transition to Electric Vehicles.

LAQM Annual Status Report 2025

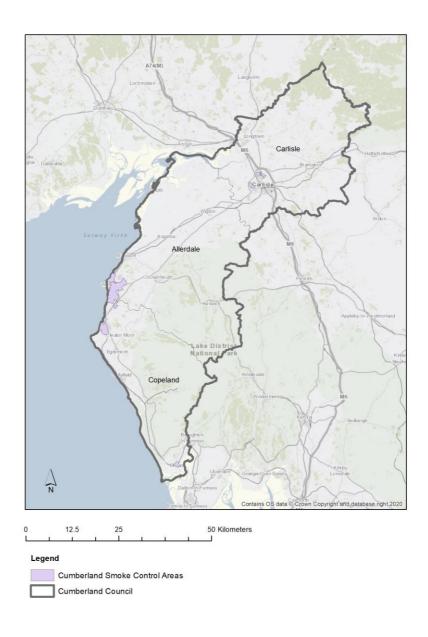
 $^{^{4} \}underline{\text{https://www.yourcumbria.org/News/2021/partnershipsuccessfulbidtodriveforwardevpoints.aspx}$

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG22 (Chapter 8) and the Air Quality Strategy⁵, local authorities are expected to work towards reducing emissions and/or concentrations of fine particulate matter (PM_{2.5})). There is clear evidence that PM_{2.5} (particulate matter smaller 2.5 micrometres) has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Cumberland Council is taking the following measures to address PM_{2.5}:

- Cumberland Council had monitored PM_{2.5} levels at Paddy's Market AQMS since 2009 as part of the AURN. This is a busy city centre junction between two AQMA's. The annual mean concentrations were consistently well below the objective at around 8-11 μg m⁻³ at this location. The monitoring equipment was relocated to Morton Manor Community Centre in 2021. PM_{2.5} concentrations have remained within this range. There are ongoing efforts to reduce to reduce the PM_{2.5} concentrations.
- The Environmental Health Department will continue to work in partnership with the Highways Department to improve traffic flows and reduce congestion at key junctions.
- Environmental Health will continue to work with the Planning Department with regard to new local developments with significant air quality implications and ensure that air quality implications and mitigation measures are taken into consideration in the planning process.
- Environmental Health will continue to work alongside the Neighbourhoods and Green Spaces team to investigate and implement the effective use of trees and green areas to offset traffic derived emissions in existing AQMA's and in new development areas.
- The Council will also continue to provide comprehensive control over emissions from all Part A2 and B Processes located within the local authority area. We will work


-

⁵ Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023

closely with the operators of these installations to continuously monitor and improve on their emissions to air as part of the permitting process.

Cumberland Council has nine designated smoke control areas. These are shown in Figure 2-1.

Figure 2-1 Location of Smoke Control Areas within Cumberland Council

 Five are within the former Carlisle City Council area. More detail can be found at the following link:

http://www.carlisle.gov.uk/LinkClick.aspx?fileticket=9E67HYHexDw%3d&tabid=729 &portalid=0&mid=2838).

- Three within the former area of Copeland Borough Council. More detail can found at the following link: <u>Smoke control areas | Copeland Borough Council</u>
- One is found with the former Allerdale Borough Council.

The most recent available data from Public Health England's Public Health Outcomes Framework⁶ show that the fraction of total mortality which is attributable to particulate air pollution (D01) within Cumberland Council was 3.4 % in 2023 (the most recent data available). This is the lowest for all local authorities within the North-West region. The averages for the North-West region and England are 4.9% and 5.2%, respectively.

Data accessed 11th June 2025.

⁶ https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data#page/3/gid/1000043/pat/6/par/E12000002/ati/502/are/E06000063/iid/93861/age/230/sex/4/cat/-1/ctp/-1/yrr/1/cid/4/tbm/1/page-options/car-do-0

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

This section sets out the monitoring undertaken within 2024 by Cumberland Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2020 and 2024 to allow monitoring trends to be identified and discussed.

On 1st April 2023 Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council, Allerdale Borough Council and Copeland Borough Council. As for last year's report, the results from the respective former monitoring networks will be combined in this year's annual status report.

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

Cumberland Council undertook automatic (continuous) monitoring at Morton Manor Community Centre⁷ during 2024. Table A.1 in Appendix A shows the details of the automatic monitoring sites. NB. Local authorities do not have to report annually on the following pollutants: 1,3 butadiene, benzene, carbon monoxide and lead, unless local circumstances indicate there is a problem. Automatic monitoring results are available through the UK-Air website (https://uk-air.defra.gov.uk/data/data_selector).

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

_

⁷ This site is known as Carlisle Morton A595 within Defra's compliance monitoring network. More information is available through UK_AIR website: Site Information for Carlisle Morton A595(UKA00932) - Defra, UK

3.1.2 Non-Automatic Monitoring Sites

Cumberland Council undertook non- automatic (i.e. passive) monitoring of NO₂ at 70 sites during 2023. This includes 28 sites for former Carlisle City Council, 18 sites for former Allerdale Borough Council and 24 sites for former Copeland Borough Council. Appendix A presents the details of the non-automatic sites.

There are no changes in site numbers in 2024 compared to 2023.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Automatic monitoring occurs only at Morton Manor Community Centre. Sampling at this site began in October 2021⁸. In 2024, the annual NO₂ average concentration decreased slightly to 8.8 µg m⁻³ from the 9.0 µg m⁻³ measured in 2023.

Elsewhere within Cumberland Council automatic monitoring of nitrogen dioxide concentrations began at Paddy's Market and Stanwix Bank in 2006 and 2007 and stopped at each site in 2021 and 2016, respectively. Figure 3-1 shows that the annual mean concentration has been below the annual mean objective since 2011.

 $^{^8}$ The annual mean concentration for 2021 at Morton Manor Community Centre was 11.4 μ g m $^{-3}$. Because the data capture was 18.9 % and outside the permissible range for annualisation the annual concentration is only be considered an indicative measurement.

Figure 3-1 Automatic montoring data (2006 – 2024)

Table A.3 and Table A.4 in Appendix A compare the ratified and adjusted monitored NO_2 annual mean concentrations for the past five years with the air quality objective of 40 μ g m⁻³. Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e. the values are exclusive of any consideration to fall-off with distance adjustment). The annual mean concentrations are compared with the air quality objective of 40 μ g m⁻³ in Figures A.1 to A.7. Generally, the NO_2 concentrations are less than those measured in 2023.

Figure A.1 shows the NO₂ concentration measured by the automatic monitor at Morton Manor Community Centre in 2024. The concentration 8.8 µg m⁻³ is considerably less than those measured at Paddy's Market which over the five-year period (2016 to 2020) ranged from a low of 19 µg m⁻³ in 2020 to a high of 27.6 µg m⁻³ in 2016.

For the purposes of the presenting results for each of the former local authorities Figures A.2 to A.5 show the trends within the former local authority area of Carlisle City Council and had been grouped historically according to Air Quality Management Areas- either revoked or current as well as showing trends in a number of other areas.

Figures A.6 and A.7 show the five-year trends within the former respective local authority areas of Allerdale and Copeland.

For sites situated along the A7 (see Figure A.2), the highest concentration (27.9 µg m⁻³) was measured at Stanwix Bank (A10) which represented a decrease of 0.7 µg m⁻³ compared to what was measured in 2023.

At sites within the former AQMA 2 (Currock Street, B7) and former AQMA 5 (Dalston Road, B4), the annual mean NO_2 concentrations were 28.8 μ g m³ and 27.1 μ g m⁻³, respectively. This represents an increase of 2.0 μ g m⁻³ at Currock Street and a decrease of 1.0 μ g m⁻³ at Dalston Road compared to the 2023 measurements. Elsewhere in the city centre, concentrations decreased at all sites with the exception of 282 Warwick Road, where the concentrations increased by 0.1 μ g m⁻³ (Figure A.3).

For sites situated along the section of Wigton Road closer to the city centre, Bridge Street and London Road (see Figure A.4) the highest concentration (30.9 µg m⁻³) continues to be measured in AQMA 4 Bridge Street (E8). This represents a decrease of 3.2 µg m⁻³ compared to 2023 and is the largest decrease, in terms of µg m⁻³ measured, in the former Carlisle City Council area. At most other sites in this part of the city concentrations also decreased in 2024 compared to 2023.

The remaining sites along the Carlisle Northern Development Route and at a number of locations to the south of city centre and at the airport all measured concentrations considerably less than the annual objective concentration (see Figure A.5) The largest concentration (11.9 µg m⁻³) was measured at Wigton Road (H5).

Figure A.6 presents the five-year trend in the former local authority of Allerdale Borough Council. In 2024, the highest NO₂ concentration (22.4 μg m⁻³) continues to be measured at Murray Road (DT 2); this represents a decrease of 0.5 μg m⁻³ compared to 2023.

At most sites the NO₂ concentrations decreased in 2024 compared to 2023 (13 sites decreased within a total of 18 sites). With the largest decrease (4.8 μ g m⁻³) occurring at Ramsey Brow (DT 6), where the concentration decreased from 21.0 μ g m⁻³ to 16.2 μ g m⁻³. The largest increase (3.2 μ g m⁻³) occurring at Hall Park View (DT11), where the concentration increased from 11.6 μ g m⁻³ to 14.8 μ g m⁻³.

Figure A.7 presents the five-year trend in the former local authority of Copeland Borough Council. In 2023 the highest NO₂ concentration (15.4 μ g m⁻³) continues to be measured at Strand St, Whitehaven (N11); this represents a decrease of 0.2 μ g m⁻³ compared to 2023. There were marginally more increases increase in NO₂ concentrations in 2024 compared to what was measured in 2023: 13 sites showed an increase, while 11 sites showed a decrease. The variation between each year is relatively small. The largest increase was observed at Council Centre, St Georges Rd, Millom (N10) where the concentration increased from 6.0 μ g m⁻³ in 2023 to 7.4 μ g m⁻³. The largest decrease occurred at 4 Holyoak, Beckermet (N13) where the concentration decreased by 1.9 μ g m⁻³ from 6.4 μ g m⁻³ in 2023 to 4.6 μ g m⁻³.

For diffusion tubes, the full 2024 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant.

Table A.5 in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past five years with the air quality objective of 200 μg m⁻³, not to be exceeded more than 18 times per year.

3.2.2 Particulate Matter (PM₁₀)

Table A.6 in Appendix A: Monitoring Results compares the ratified and adjusted monitored PM₁₀ annual mean concentrations for the past five years with the air quality objective of 40 µg m⁻³.

Table A.7 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past five years with the air quality objective of 50 μ g m⁻³, not to be exceeded more than 35 times per year. There were no days for which the short term AQO exceeded 50 μ g m⁻³.

The automatic monitors within Carlisle were relocated from Paddy's Market to Morton Manor Community Centre during 2021. However, there was insufficient data capture at Morton Manor in 2021 to calculate a valid annual mean.

In 2024, the PM₁₀ concentration measured at Morton Manor Community Centre was 12.9 µg m⁻³. This represented an increase of 1.1 µg m⁻³ compared to what was measured in 2023 (11.8 µg m⁻³) and was lower than had been measured previously at Paddy's Market;

over the five-year period 2016 to 2020 the PM_{10} concentration ranged from a low of 13.6 $\mu g \ m^{-3}$ in 2016 to a high of 18.6 m^{-3} in 2019.

3.2.3 Particulate Matter (PM_{2.5})

Table A.8 in Appendix A presents the ratified and adjusted monitored PM_{2.5} annual mean concentrations for the past five years.

PM_{2.5} is the pollutant which has the biggest impact on public health and on which the Public Health Outcomes Framework (PHOF) indicator is based. Therefore, although not covered by the LAQM regulations, local authorities are encouraged to understand the PM_{2.5} concentration within their council area.

In 2024, the PM_{2.5} concentration measured at Morton Manor Community Centre was 7.6 μg m⁻³. which is lower than the World Health Organisation guideline of 10 μg m⁻³. Elsewhere, the background PM_{2.5} maps for Cumberland Council for 2024 also showed no exceedance of the guideline concentration. The highest modelled background PM_{2.5} concentrations⁹ anywhere within Cumberland Council was 6.6 μg m⁻³. This occurred for a 1 km x 1 km square located in Shaddongate, Carlisle. The square was centred on Ordnance Survey coordinates of 339500, 555500 (equivalent to latitude and longitude of 54.890561, -2.944725).

Cumberland Council also acknowledges Defra's proposed Environmental Targets for PM_{2.5}.

- Annual mean concentration target 10 μg m⁻³ to be achieved by 2040;
- Population Exposure Reduction Target 35% reduction (on 2018 baseline) by 2040.

The Government expects local authorities will need to take actions in support of the new targets.

_

⁹ https://uk-air.defra.gov.uk/data/lagm-background-maps?year=2021

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA?	Which AQMA? ⁽¹⁾	Monitoring Technique	Distance to Relevant Exposure (m) ⁽²⁾	Distance to kerb of nearest road (m) ⁽¹⁾	Inlet Height (m)
ммсс	Morton Manor Community Centre	Roadside	338195	554990	NO2, PM10, PM2.5	No		Chemiluminescence, BAM 1020 heated	6.0	8.0	2.37, 2.67, 2.77

Notes:

- (1) N/A if not applicable
- (2) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

Table A.2 – Details of Non-Automatic Monitoring Sites

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
A1	45 SCOTLAND RD	Roadside	339995	557188	NO ₂	NO	4.5	1.5	NO	3.1
A10	STANWIX BANK	Roadside	340008	556842	NO ₂	NO	1.5	1.5	NO	3.0
A12	STANWIX BANK CAR PARK	Roadside	339935	557125	NO ₂	NO	0.0	3.0	NO	2.8
A5	37 KINGSTOWN RD	Roadside	339758	558059	NO ₂	NO	0.0	4.0	NO	2.8
A7	282 KINGSTOWN RD	Roadside	339526	559285	NO ₂	NO	7.5	4.0	NO	2.7
A9	BRAMPTON RD	Roadside	340028	556833	NO ₂	Revoked June 2025, AQMA 1	0.0	1.5	NO	2.8
B4	DALSTON RD	Roadside	339434	555638	NO ₂	Revoked June 2025, AQMA 5	0.0	3.5	NO	2.8
В7	12 CURROCK ST	Roadside	340205	555198	NO ₂	Revoked June 2025, AQMA 2	0.0	3.0	NO	3.1
C1	LOWTHER ST	Roadside	340216	556131	NO ₂	NO	0.0	3.0	NO	2.9
C2	TOURIST INFO	Urban Centre	340069	555955	NO ₂	NO	N/A	N/A	NO	2.7

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
С3	DEVONSHIRE ST	Roadside	340218	555768	NO ₂	NO	0.0	3.0	NO	2.9
D12	POST OFFICE	Kerbside	340307	555718	NO_2	NO	N/A	5.0	NO	3.0
D7	282 WARWICK RD	Roadside	341593	555893	NO ₂	NO	0.0	7.0	NO	2.8
E22	FINKLE ST	Roadside	339834	556137	NO_2	NO	0.0	12.0	NO	2.8
E12	3 WIGTON RD	Roadside	339225	555821	NO ₂	NO	2.0	2.5	NO	3.0
E15	22 WIGTON RD	Roadside	339091	555736	NO ₂	NO	0.0	4.5	NO	3.9
E16	JOVIAL SAILOR	Roadside	339141	555900	NO ₂	NO	0.0	2.5	NO	2.7
E19	49 WIGTON RD	Roadside	338953	555610	NO ₂	NO	0.0	2.5	NO	3.1
E6, E61, E62	MORTON MANOR 3	Roadside	339467	555974	NO ₂	NO	6.0	8.0	Yes	2.4
E8	BRIDGE ST	Roadside	339516	556024	NO ₂	Yes, AQMA 4	0.0	4.0	NO	3.1
F10	155 BOTCHERGATE	Roadside	340600	555349	NO ₂	NO	0.0	3.0	NO	2.7
F7	24 LONDON RD	Roadside	340708	555240	NO ₂	NO	0.0	4.5	NO	2.7
F9	129 LONDON RD	Kerbside	341099	554931	NO ₂	NO	0.0	0.5	NO	3.0

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
G4	THE HOBBIT	Rural	336905	554036	NO ₂	NO	0.0	19.0	NO	2.9
H5	WIGTON RD	Roadside	337643	554100	NO ₂	NO	0.0	1.5	NO	2.4
H6	PETER LANE	Roadside	337962	553220	NO ₂	NO	0.0	4.0	NO	2.4
H7	DALSTON RD	Roadside	338282	553396	NO ₂	NO	0.0	6.5	NO	2.4
H8	AIRPORT	Other	347874	561254	NO ₂	NO	0.0	2.0	NO	2.4
DT1, DT1B	Hall Park View, Workington	Kerbside	300721	528958	NO ₂	No	0.0	1.0	No	2.5
DT2, DT2B	Murray Road, Workington	Urban Centre	301194	528711	NO ₂	No	N/A	1.0	No	2.5
DT3, DT3B	Crown Street, Cockermouth	Kerbside	311652	530658	NO ₂	No	0.0	0.5	No	2.5
DT4, DT4B	Main Street, Keswick	Roadside	326419	523602	NO ₂	No	4.0	1.5	No	2.5
DT5, DT5B	Curzon Street, Maryport	Kerbside	303778	536534	NO ₂	No	5.0	1.0	No	2.5
DT6, DT6B	Ramsay Brow, Workington	Kerbside	300588	528682	NO ₂	No	0.0	1.0	No	2.5
DT7, DT7B	King Street, Wigton	Kerbside	325508	548419	NO ₂	No	2.0	1.0	No	2.5
DT8, DT8B	Main Road, High Harrington	Roadside	299591	525545	NO ₂	No	0.0	2.0	No	2.5

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
DT9, DT9B	Lawson Street, Aspatria	Kerbside	315299	542145	NO ₂	No	0.0	1.0	No	2.5
DT10, DT10B	South Street, Cockermouth	Kerbside	312091	530547	NO ₂	No	8.7	0.5	No	2.5
DT11, DT11B	Penrith Road, Keswick	Kerbside	327949	523764	NO ₂	No	7.0	1.0	No	2.5
DT12, DT12B	Northside Primary School, Northside	Kerbside	299939	529709	NO ₂	No	8.0	1.0	No	2.5
DT15, DT15B	Eden Street Silloth	Industrial	310949	553517	NO ₂	No	2.0	0.5	No	2.5
DT16, DT16B	Main Road Seaton	Kerbside	301765	530720	NO ₂	No	6.1	1.0	No	2.5
DT17, DT17B	South End Street Wigton	Urban Background	325568	547874	NO ₂	No	2.9	3.1	No	2.5
DT18, DT18B	West Street Aspatria	Roadside	314286	541751	NO ₂	No	15.0	2.0	No	2.5
DT19, DT19B	Marvejols Park Cockermouth	Suburban	311391	529810	NO ₂	No	4	1	No	2.5
DT20, DT20B	Eaglesfield Street Marypont	Urban Background	303720	536702	NO ₂	No	3	0	No	2.5
N1	55/56 Lowther St, Whitehaven	Urban Centre	297305	518185	NO ₂	NO	2.0	0.0	No	2.5
N2	Police Station, Scotch St, Whitehaven	Urban Centre	297515	518070	NO ₂	NO	4.0	1.0	No	2.5
N3	Fire Station, Hensingham	Urban Background	299020	517245	NO ₂	NO	20.0	20.0	No	2.5

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
N4	116 Holborn Hill, Millom	Urban Background	316725	480340	NO ₂	NO	1.0	1.0	No	2.5
N5	Aldby Grove, Cleator Moor	Urban Background	302260	514890	NO ₂	NO	0.0	2.0	No	2.5
N6	White House, Strand St, Whitehaven	Urban Centre	297230	518155	NO ₂	NO	4.0	2.0	No	2.5
N7	Tourist Info, Main St, Egremont	Urban Centre	301095	510930	NO ₂	NO	5.0	3.0	No	2.5
N8	Presbytery, St Bridgets Ln, Egremont	Urban Background	300895	510695	NO ₂	NO	0.0	10.0	No	2.5
N9	Primary School, Ennerdale Bridge	Rural	307000	515855	NO ₂	NO	0.0	2.0	No	2.5
N10	Council Centre, St Georges Rd, Millom	Urban Centre	317310	479980	NO ₂	NO	40.0	2.0	No	2.5
N11	Opp JPJ, Strand St, Whitehaven	Urban Centre	297320	518280	NO ₂	NO	0.0	3.0	No	2.5
N12	2 The Crescent, Thornhill	Suburban	301225	508805	NO ₂	NO	4.0	0.0	No	2.5
N13	4 Holyoak, Beckermet	Rural	301975	506635	NO ₂	NO	3.0	0.0	No	2.5
N14	The Globe, The Square, Gosforth	Urban Background	306695	503535	NO ₂	NO	4.0	0.0	No	2.5
N15	21 Scafell Close, Seascale	Urban Background	304440	501495	NO ₂	NO	6.0	1.0	No	2.5

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube Co- located with a Continuous Analyser?	Tube Height (m)
N16	Greendale Guest House, Wasdale	Rural	314410	505570	NO ₂	NO	30.0	18.0	No	2.5
N17	Holmrook Service Station, Holmrook	Roadside	308235	499295	NO ₂	NO	30.0	5.0	No	2.5
N18	98 Main St, Distington	Urban Background	300590	523220	NO ₂	NO	0.0	2.0	No	2.5
N19	Railway Station, Bootle	Rural	309345	489300	NO ₂	NO	4.0	1.0	No	2.5
N20	King's Head, Bootle	Roadside	310735	488320	NO ₂	NO	6.0	2.0	No	2.5
N21	Nr Seascale Hall Farm, Seascale	Rural	303995	502445	NO ₂	NO	350.0	1.0	No	2.5
N22	Trinity Court, Scotch St, Whitehaven	Urban Centre	297440	517960	NO ₂	NO	2.0	0.0	No	2.5
N23	2a Main St, Distington	Roadside	300885	523890	NO ₂	NO	0.0	2.0	No	2.5
N24	New Lowther St, Whitehaven	Urban Centre	297260	518225	NO ₂	NO	3.0	1.0	No	2.5

Notes:

- (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).
- (2) N/A if not applicable.

Table A.3 – Annual Mean NO₂ Monitoring Results: Automatic Monitoring (µg m⁻³)

Site ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
MMCC	338195	554990	Roadside	96.7	96.7			9.0	9.0	8.8

- ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.
- ⊠ Reported concentrations are those at the location of the monitoring site (annualised, as required), i.e. prior to any fall-off with distance correction.
- ☑ Where exceedances of the NO₂ annual mean objective occur at locations not representative of relevant exposure, the fall-off with distance concentration has been calculated and reported concentration provided in brackets for 2024.

The annual mean concentrations are presented as µg m⁻³.

Exceedances of the NO₂ annual mean objective of 40 µg m⁻³ are shown in **bold**.

All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

Table A.4 – Annual Mean NO₂ Monitoring Results: Non-Automatic Monitoring (µg m⁻³)

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
A1	339995	557188	Roadside	90.6	90.6	23.3	25.5	23.6	22.1	21.0
A10	340008	556842	Roadside	90.6	90.6	24.9	30.5	28.7	28.6	27.9
A12	339935	557125	Roadside	90.6	90.6	20.8	24.3	22.3	20.5	21.1
A5	339758	558059	Roadside	90.6	90.6	21.4	25.2	23.8	21.5	20.4
A7	339526	559285	Roadside	90.6	90.6	14.1	17.1	15.5	14.2	13.9
A9	340028	556833	Roadside	90.6	90.6	23.0	26.9	26.1	24.3	24.2
B4	339434	555638	Roadside	90.6	90.6	28.3	32.9	29.3	28.1	27.1
В7	340205	555198	Roadside	74.9	74.9	27.0	30.4	28.8	26.8	28.8
C1	340216	556131	Roadside	90.6	90.6	19.7	22.1	22.1	20.9	20.3
C2	340069	555955	Urban Centre	56.6	56.6	11.5	13.2	13.0	12.9	11.7
C3	340218	555768	Roadside	41.5	41.5	18.6	22.8	20.8	19.9	17.3
D12	340307	555718	Kerbside	90.6	90.6	20.4	24.7	23.0	23.5	21.5

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
D7	341593	555893	Roadside	90.6	90.6	20.8	24.8	22.9	21.2	21.3
E22	339834	556137	Roadside	83.0	83.0	22.0	24.7	24.0	22.4	22.3
E12	339225	555821	Roadside	90.6	90.6	24.6	29.5	25.9	27.1	26.1
E15	339091	555736	Roadside	90.6	90.6	21.4	26.4	22.5	22.8	22.3
E16	339141	555900	Roadside	90.6	90.6	22.6	27.3	24.2	23.9	23.2
E19	338953	555610	Roadside	90.6	90.6	22.2	29.4	25.9	24.7	24.5
E6, E61, E62	339467	555974	Roadside	90.6	90.6		10.6	9.9	9.5	9.6
E8	339516	556024	Roadside	90.6	90.6	31.7	36.3	33.5	34.1	30.9
F10	340600	555349	Roadside	90.6	90.6	25.4	29.9	25.8	25.3	24.8
F7	340708	555240	Roadside	90.6	90.6	24.7	31.0	26.1	25.9	25.7
F9	341099	554931	Kerbside	83.0	83.0	23.6	28.9	27.1	25.6	25.0
G4	336905	554036	Rural	90.6	90.6	8.0	9.5	10.1	8.1	7.4
H5	337643	554100	Roadside	90.6	90.6	10.4	12.0	11.0	10.1	11.9

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
H6	337962	553220	Roadside	49.1	49.1	8.4	8.4	7.4	6.1	6.9
H7	338282	553396	Roadside	83.0	83.0	11.6	13.2	11.8	11.1	9.3
H8	347874	561254	Other	90.6	90.6	4.8	5.5	5.6	4.9	4.5
DT1, DT1B	300721	528958	Kerbside	81.7	81.7	13.0	13.1	11.6	11.6	14.8
DT2, DT2B	301194	528711	Urban Centre	73.6	73.6	21.6	21.8	22.0	22.9	22.4
DT3, DT3B	311652	530658	Kerbside	100.0	100.0	15.0	16.9	15.2	14.0	13.5
DT4, DT4B	326419	523602	Roadside	90.6	90.6	18.4	21.1	21.6	19.9	19.0
DT5, DT5B	303778	536534	Kerbside	100.0	100.0	19.7	19.1	20.0	18.9	16.2
DT6, DT6B	300588	528682	Kerbside	100.0	100.0	22.4	22.3	22.9	21.0	16.2
DT7, DT7B	325508	548419	Kerbside	91.1	91.1	19.9	20.0	19.3	17.3	16.7
DT8, DT8B	299591	525545	Roadside	100.0	100.0	12.6	12.5	12.5	10.1	11.5
DT9, DT9B	315299	542145	Kerbside	100.0	100.0	13.0	12.9	12.5	11.6	11.0
DT10, DT10B	312091	530547	Kerbside	100.0	100.0	12.5	11.7	12.5	12.9	12.0

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
DT11, DT11B	327949	523764	Kerbside	100.0	100.0	20.2	13.1	14.8	14.1	13.3
DT12, DT12B	299939	529709	Kerbside	83.0	83.0	10.0	9.7	11.8	12.7	9.1
DT15, DT15B	310949	553517	Industrial	74.1	74.1		8.3	7.9	7.1	9.1
DT16, DT16B	301765	530720	Kerbside	66.6	66.6		9.0	8.8	9.3	8.6
DT17, DT17B	325568	547874	Urban Background	81.7	81.7		8.1	7.2	7.0	6.3
DT18, DT18B	314286	541751	Roadside	90.6	90.6		12.1	13.4	13.9	14.3
DT19, DT19B	311391	529810	Suburban	100.0	100.0				5.5	5.2
DT20, DT20B	303720	536702	Urban Background	100.0	100.0				6.2	6.5
N1	297305	518185	Urban Centre	100.0	100.0	10.2	13.5	13.4	12.5	12.8
N2	297515	518070	Urban Centre	100.0	100.0	12.2	13.6	12.0	11.8	11.3
N3	299020	517245	Urban Background	100.0	100.0	6.0	6.2	5.7	5.1	5.0
N4	316725	480340	Urban Background	100.0	100.0	5.8	6.3	6.0	5.7	5.9
N5	302260	514890	Urban Background	100.0	100.0	7.4	7.9	6.9	6.9	6.6

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
N6	297230	518155	Urban Centre	100.0	100.0	12.0	11.8	12.2	11.6	10.7
N7	301095	510930	Urban Centre	100.0	100.0	12.4	13.5	12.5	11.6	12.5
N8	300895	510695	Urban Background	100.0	100.0	5.1	5.1	4.9	4.9	4.6
N9	307000	515855	Rural	100.0	100.0	3.8	4.2	3.7	3.5	4.1
N10	317310	479980	Urban Centre	32.1	32.1	7.4	8.0	7.3	6.0	7.2
N11	297320	518280	Urban Centre	100.0	100.0	15.4	17.5	16.8	15.6	15.4
N12	301225	508805	Suburban	100.0	100.0	5.3	5.9	5.8	5.9	5.5
N13	301975	506635	Rural	100.0	100.0	5.4	4.9	5.0	6.4	4.6
N14	306695	503535	Urban Background	100.0	100.0	7.4	8.6	9.3	8.5	8.8
N15	304440	501495	Urban Background	100.0	100.0	4.1	3.6	3.9	4.2	3.7
N16	314410	505570	Rural	90.6	90.6	2.2	2.0	2.2	2.1	2.1
N17	308235	499295	Roadside	100.0	100.0	4.9	5.4	5.2	4.8	4.9
N18	300590	523220	Urban Background	100.0	100.0	7.0	7.6	7.5	6.8	7.1

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
N19	309345	489300	Rural	100.0	100.0	4.0	3.9	4.1	3.7	3.9
N20	310735	488320	Roadside	100.0	100.0	7.0	6.9	6.7	6.4	6.7
N21	303995	502445	Rural	100.0	100.0	3.8	3.7	3.6	3.1	3.2
N22	297440	517960	Urban Centre	100.0	100.0	9.7	11.4	10.4	9.6	9.5
N23	300885	523890	Roadside	100.0	100.0	13.5	14.7	14.5	15.3	14.6
N24	297260	518225	Urban Centre	100.0	100.0	11.0	12.0	12.0	11.3	11.5

- ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.
- ☑ Diffusion tube data has been bias adjusted.
- Reported concentrations are those at the location of the monitoring site (bias adjusted and annualised, as required), i.e. prior to any fall-off with distance correction.

The annual mean concentrations are presented as µg m⁻³.

Exceedances of the NO₂ annual mean objective of 40 µg m⁻³ are shown in **bold**.

 NO_2 annual means exceeding 60 μ g m⁻³, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**.

Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

Figure A.1 – Trends in Annual Mean NO₂ Concentrations: automatic monitoring at Morton Manor

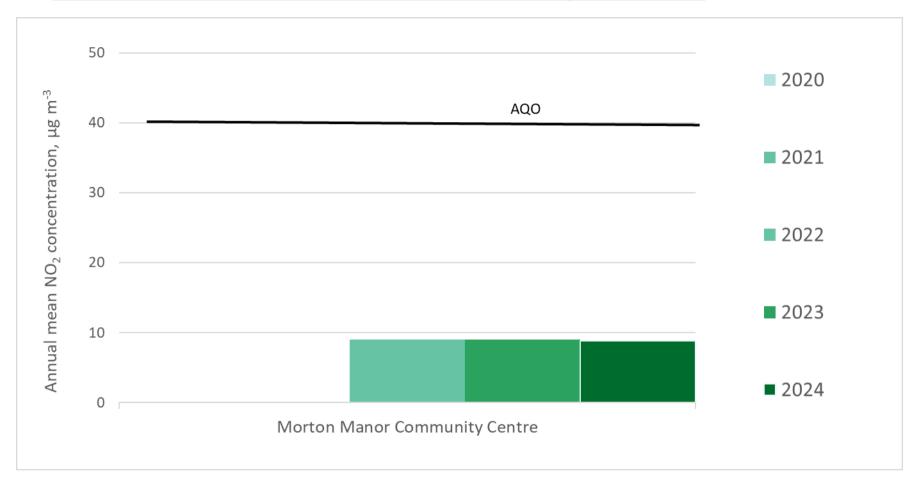


Table A.5 – 1-Hour Mean NO₂ Monitoring Results, Number of 1-Hour Means > 200 μg m⁻³

Site ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
MMCC	338195	554990	Roadside	96.7	96.7			0	0	0

Results are presented as the number of 1-hour periods where concentrations greater than 200 $\mu g\ m^{-3}$ have been recorded.

Exceedances of the NO₂ 1-hour mean objective (200 µg m⁻³ not to be exceeded more than 18 times/year) are shown in **bold**.

If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

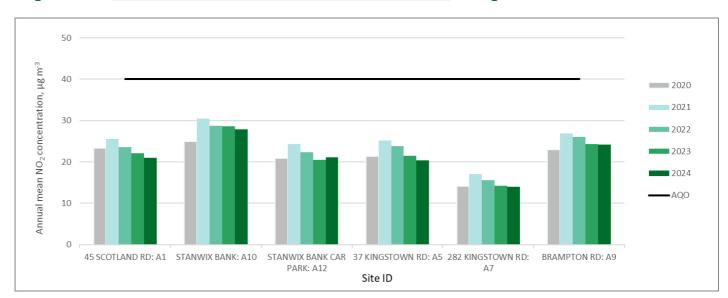


Figure A.2 - Trends in Annual Mean NO₂ Concentrations: Along A7

Figure A.3 - Trends in Annual Mean NO₂ Concentrations: for sites in city centre and within AQMA 2 and AQMA 5

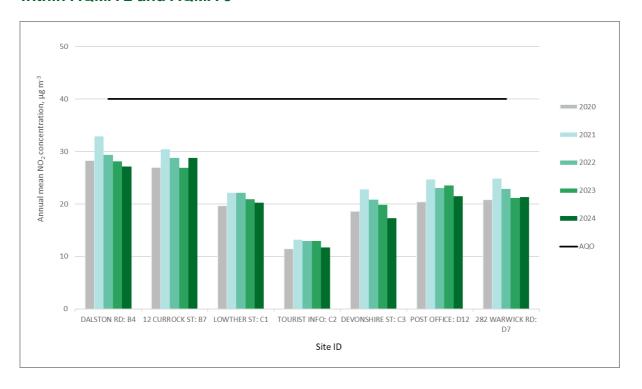


Figure A.4 - Trends in annual mean NO₂: along Wigton Road, Bridge Street and London Road

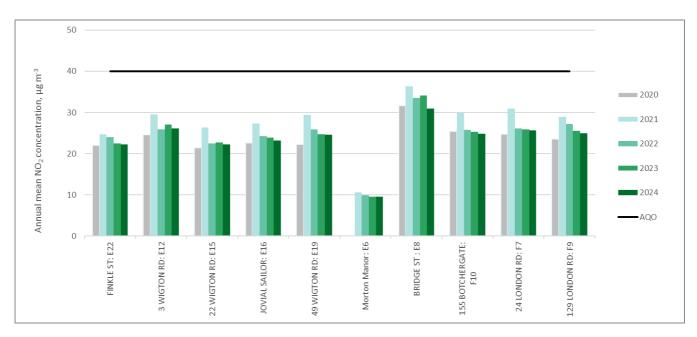


Figure A.5 - Trends in annual mean NO₂: Carlisle Northern Development Route and various other locations

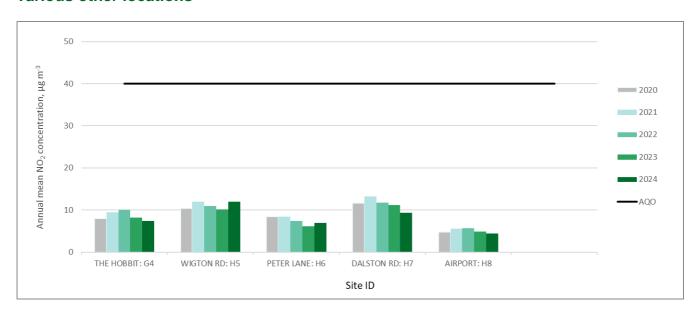


Figure A.6 - Trends in annual mean NO₂ concentrations in the former council area of Allerdale BC

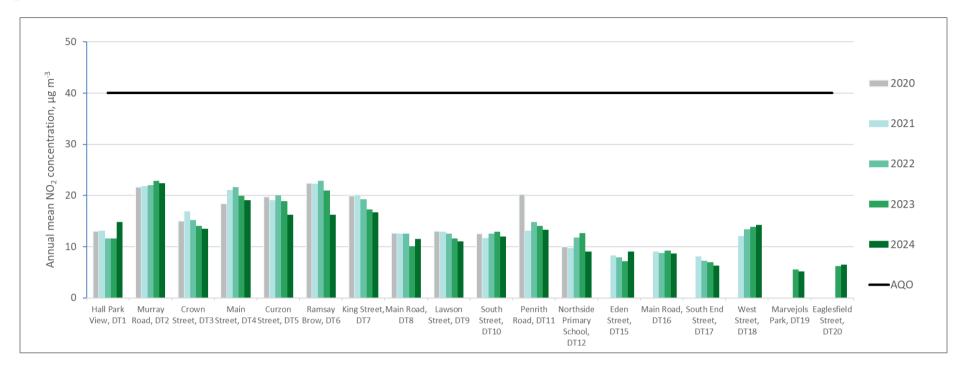


Figure A.7 - Trends in annual mean NO₂ concentrations in the former council area of Copeland BC

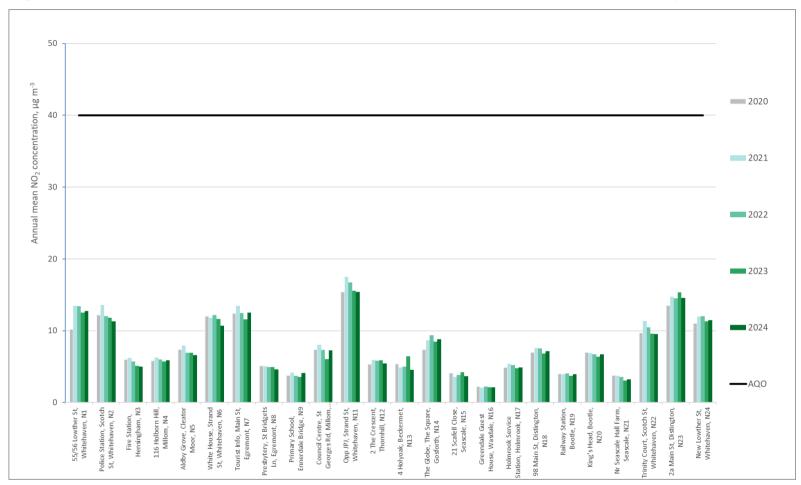


Table A.6 – Annual Mean PM₁₀ Monitoring Results (µg m⁻³)

Site ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
MMCC	338195	554990	Roadside	94.6	94.6			14.3	11.8	12.9

[☑] Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22

Figure A.8 – Trends in Annual Mean PM₁₀ Concentrations

Table A.7 – 24-Hour Mean PM_{10} Monitoring Results, Number of PM_{10} 24-Hour Means > 50 μg m⁻³

Site ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
MMCC	338195	554990	Roadside	94.6	94.6			1	0	0

Results are presented as the number of 24-hour periods where daily mean concentrations greater than 50 µg m⁻³ have been recorded. Exceedances of the PM₁₀ 24-hour mean objective (50 µg m⁻³ not to be exceeded more than 35 times/year) are shown in **bold**. If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets.

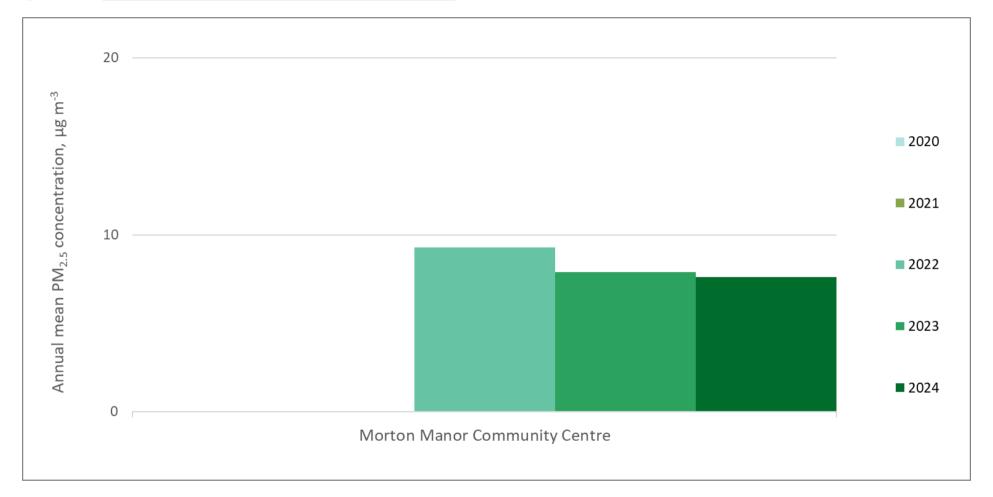
- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

Figure A.9 – Trends in Number of 24-Hour Mean PM₁₀ Results > 50 μg m⁻³

Table A.8 – Annual Mean PM_{2.5} Monitoring Results (µg m⁻³)

Site ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
MMCC	338195	554990	Roadside	65.8	65.8			9.3	7.9	7.6

[☑] Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.


Notes:

The annual mean concentrations are presented as µg m⁻³.

All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

Figure A.10 – Trends in Annual Mean PM_{2.5} Concentrations

Appendix B: Full Monthly Diffusion Tube Results for 2024

Table B.1 – NO₂ 2024 Diffusion Tube Results (μg m⁻³)

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted CCC =0.84 ABC = 0.78 CBC = 0.88	Annual Mean: Distance Corrected to Nearest Exposure	Comment
A1	339995	557188	29.1	30.1	26.3	23.1	21.0	22.6	19.5	24.2	18.5		31.0	29.4	25.0	21.0	-	
A10	340008	556842	36.9	30.6	39.2	35.2	37.4	22.9	29.4	24.3	37.6		39.9	32.1	33.2	27.9	-	
A12	339935	557125	27.1	26.7	24.0	27.0	26.8	21.4	23.5	19.8	26.0		28.7	25.8	25.2	21.1	-	
A5	339758	558059	28.1	28.4	21.1	22.0	21.5	22.1	22.7	22.5	17.5		32.3	29.3	24.3	20.4	-	
A7	339526	559285	20.6	18.3	15.0	13.9	15.0	13.8	15.0	14.3	12.5		22.9	21.2	16.6	13.9	-	
A9	340028	556833	30.3	36.6	24.2	27.1	29.9	27.3	29.2	22.9	26.7		32.0	30.6	28.8	24.2	-	
B4	339434	555638	32.8	37.9	33.6	31.7	31.0	28.5	30.6	26.4	28.5		39.8	34.6	32.3	27.1	-	
В7	340205	555198	34.8	а	29.5	31.1	31.4	28.8	30.1	26.0	а		41.4	38.2	32.4	28.8	-	
C1	340216	556131	25.4	29.9	26.3	22.2	23.7	18.9	19.4	19.9	21.7		30.9	27.3	24.1	20.3	-	
C2	340069	555955	18.0	18.2	16.4	11.4	10.4	8.9	9.5	а	а	а	а	а	13.3	11.7	-	
С3	340218	555768	24.8	24.4	а	а	а	а	а	а	22.1		26.1	23.0	24.1	17.3	-	
D12	340307	555718	27.3	31.7	26.5	21.2	23.6	21.6	23.0	23.9	20.7		31.0	30.9	25.6	21.5	-	
D7	341593	555893	28.7	32.5	24.1	21.7	24.1	25.5	20.9	25.7	17.0		29.9	28.6	25.3	21.3	-	
E22	339834	556137	28.0	32.5	25.5	25.5	24.5	21.1	22.7	23.3	а		32.7	29.5	26.5	22.3	-	
E12	339225	555821	29.0	31.2	33.9	30.0	33.6	27.2	31.9	25.5	34.8		33.4	31.4	31.1	26.1	-	
E15	339091	555736	29.8	30.9	27.9	24.3	26.6	21.9	24.5	17.6	26.0		32.8	29.5	26.5	22.3	-	
E16	339141	555900	24.8	32.7	32.4	26.7	31.7	19.5	22.7	18.5	33.6		33.2	28.3	27.6	23.2	-	

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted CCC =0.84 ABC = 0.78 CBC = 0.88	Annual Mean: Distance Corrected to Nearest Exposure	Comment
E19	338953	555610	26.4	35.5	34.8	30.2	30.9	22.6	24.2	20.7	31.5		35.0	29.6	29.2	24.5	-	
E6	339467	555974	15.8	14.2	10.4	9.9	10.0	7.8	9.7	6.9	12.0		17.0	14.5	-	-	-	Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only
E61	339467	555974	15.2	14.6	10.5	9.5	10.2	7.6	9.7	7.0	11.9		16.5	12.8	-	-	-	Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only
E62	339467	555974	16.1	13.1	11.0	10.0	8.6	6.9	8.7	6.4	10.2		15.7	15.3	11.4	9.6	-	Triplicate Site with E6, E61 and E62 - Annual data provided for E62 only
E8	339516	556024	14.2	42.4	43.0	41.8	42.2	37.1	38.6	27.2	42.6		38.3	37.5	36.8	30.9	-	
F10	340600	555349	31.9	34.2	29.9	28.4	31.4	24.6	26.4	22.4	29.0		32.9	34.2	29.6	24.8	-	
F7	340708	555240	32.5	36.4	30.4	30.7	30.4	29.2	28.1	27.8	23.9		33.9	32.7	30.6	25.7	-	
F9	341099	554931	29.7	34.1	30.1	28.8	32.3	24.5	а	21.5	31.6		34.0	30.5	29.7	25.0	-	
G4	336905	554036	11.3	11.1	8.5	6.7	7.0	5.9	6.7	7.0	7.4		13.3	11.9	8.8	7.4	-	
H5	337643	554100	36.8	15.5	12.7	9.9	8.6	8.0	8.8	9.1	10.9		19.0	17.1	14.2	11.9	-	
H6	337962	553220	а	а	а	а	а	4.5	6.3	4.6	9.7		11.2	9.1	7.6	6.9	-	
H7	338282	553396	15.6	14.8		9.4	9.4	7.2	7.8	8.4	11.8		14.8	11.2	11.0	9.3	-	
Н8	347874	561254	6.7	6.9	5.6	3.5	4.1	3.4	4.1	4.2	5.6		8.0	6.4	5.3	4.5	-	
DT1	300721	528958	а	16.8	16.9	13.5	13.5	25.4	22.1	13.6	23.0	а	28.3	17.0	-	-	-	Duplicate Site with DT1 and DT1B - Annual data provided for DT1B only
DT1B	300721	528958	a	16.8	16.9	13.5	13.5	25.4	22.1	13.6	23.0	а	28.3	17.0	19.0	14.8	-	Duplicate Site with DT1 and DT1B - Annual data provided for DT1B only
DT2	301194	528711	33.2	29.3	23.6	24.0	28.6	29.5	20.1	22.1	23.4	а	а	а	-	-	-	Duplicate Site with DT2 and DT2B - Annual data provided for DT2B only
DT2B	301194	528711	33.2	29.3	23.6	24.0	28.6	29.5	20.1	22.1	23.4	а	а	а	26.0	22.4	-	Duplicate Site with DT2 and DT2B - Annual data provided for DT2B only
DT3	311652	530658	20.4	23.0	8.7	16.2	16.7	15.5	15.7	13.3	18.6	17.7	17.1	24.8	-	-	-	Duplicate Site with DT3 and DT3B - Annual data provided for DT3B only
DT3B	311652	530658	20.4	23.0	8.7	16.2	16.7	15.5	15.7	13.3	18.6	17.7	17.1	24.8	17.3	13.5	-	Duplicate Site with DT3 and DT3B - Annual data provided for DT3B only

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted CCC =0.84 ABC = 0.78 CBC = 0.88	Annual Mean: Distance Corrected to Nearest Exposure	Comment
DT4	326419	523602	24.5	25.1	24.0	23.1	а	28.0	8.6	39.4	15.4	26.0	25.7	28.6	-	-	-	Duplicate Site with DT4 and DT4B - Annual data provided for DT4B only
DT4B	326419	523602	24.5	25.1	24.0	23.1	а	28.0	8.6	39.4	15.4	26.0	25.7	28.6	24.4	19.0	-	Duplicate Site with DT4 and DT4B - Annual data provided for DT4B only
DT5	303778	536534	23.0	27.9	24.6	21.3	18.2	4.7	17.8	17.9	21.4	23.1	21.7	27.5	-	-	-	Duplicate Site with DT5 and DT5B - Annual data provided for DT5B only
DT5B	303778	536534	23.0	27.9	24.6	21.3	18.2	4.7	17.8	17.9	21.4	23.1	21.7	27.5	20.8	16.2	-	Duplicate Site with DT5 and DT5B - Annual data provided for DT5B only
DT6	300588	528682	26.3	28.1	31.7	25.7	25.6	10.6	11.9	8.4	13.8	15.0	17.1	34.9	-	-	-	Duplicate Site with DT6 and DT6B - Annual data provided for DT6B only
DT6B	300588	528682	26.3	28.1	31.7	25.7	25.6	10.6	11.9	8.4	13.8	15.0	17.1	34.9	20.8	16.2	-	Duplicate Site with DT6 and DT6B - Annual data provided for DT6B only
DT7	325508	548419	а	27.2	16.3	20.6	23.8	20.0	20.1	14.7	23.8	22.5	17.4	29.8	-	-	-	Duplicate Site with DT7 and DT7B - Annual data provided for DT7B only
DT7B	325508	548419	а	27.2	16.3	20.6	23.8	20.0	20.1	14.7	23.8	22.5	17.4	29.8	21.5	16.7	-	Duplicate Site with DT7 and DT7B - Annual data provided for DT7B only
DT8	299591	525545	16.0	15.9	20.6	13.8	15.1	8.8	8.5	6.1	20.1	15.2	19.0	18.3	-	-	-	Duplicate Site with DT8 and DT8B - Annual data provided for DT8B only
DT8B	299591	525545	16.0	15.9	20.6	13.8	15.1	8.8	8.5	6.1	20.1	15.2	19.0	18.3	14.8	11.5	-	Duplicate Site with DT8 and DT8B - Annual data provided for DT8B only
DT9	315299	542145	17.2	17.2	12.0	13.2	14.2	13.2	12.4	10.0	14.2	14.0	11.6	19.8	-	-	-	Duplicate Site with DT9 and DT9B - Annual data provided for DT9B only
DT9B	315299	542145	17.2	17.2	12.0	13.2	14.2	13.2	12.4	10.0	14.2	14.0	11.6	19.8	14.1	11.0	-	Duplicate Site with DT9 and DT9B - Annual data provided for DT9B only
DT10	312091	530547	18.5	19.5	16.7	13.3	15.3	11.8	12.0	7.8	15.9	15.6	19.4	18.6	-	-	-	Duplicate Site with DT10 and DT10B - Annual data provided for DT10B only
DT10B	312091	530547	18.5	19.5	16.7	13.3	15.3	11.8	12.0	7.8	15.9	15.6	19.4	18.6	15.4	12.0	-	Duplicate Site with DT10 and DT10B - Annual data provided for DT10B only
DT11	327949	523764	15.5	17.9	21.2	14.8	17.4	11.0	10.5	19.2	19.5	19.7	19.8	18.0	-	-	-	Duplicate Site with DT11 and DT11B - Annual data provided for DT11B only
DT11B	327949	523764	15.5	17.9	21.2	14.8	17.4	11.0	10.5	19.2	19.5	19.7	19.8	18.0	17.0	13.3	-	Duplicate Site with DT11 and DT11B - Annual data provided for DT11B only
DT12	299939	529709	13.5	15.0	11.4	10.2	9.7	10.2	а	а	6.5	14.2	9.4	16.4	-	-	-	Duplicate Site with DT12 and DT12B - Annual data provided for DT12B only

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted CCC =0.84 ABC = 0.78 CBC = 0.88	Annual Mean: Distance Corrected to Nearest Exposure	Comment
DT12B	299939	529709	13.5	15.0	11.4	10.2	9.7	10.2	а	а	6.5	14.2	9.4	16.4	11.7	9.1	-	Duplicate Site with DT12 and DT12B - Annual data provided for DT12B only
DT15	310949	553517	а	11.8	6.3	9.5	25.8	а	9.4	6.6	8.4	а	11.9	14.1	-	-	-	Duplicate Site with DT15 and DT15B - Annual data provided for DT15B only
DT15B	310949	553517	а	11.8	6.3	9.5	25.8	а	9.4	6.6	8.4	а	11.9	14.1	11.5	9.1	-	Duplicate Site with DT15 and DT15B - Annual data provided for DT15B only
DT16	301765	530720	а	14.1	12.3	а	11.6	10.1	а	а	10.8	9.5	9.2	17.8	-	-	-	Duplicate Site with DT16 and DT16B - Annual data provided for DT16B only
DT16B	301765	530720	а	14.1	12.3	а	11.6	10.1	а	а	10.8	9.5	9.2	17.8	11.9	8.6	-	Duplicate Site with DT16 and DT16B - Annual data provided for DT16B only
DT17	325568	547874	а	9.9	9.4	6.7	9.1	5.3	5.6	3.9	8.2	а	10.5	12.1	-	-	-	Duplicate Site with DT17 and DT17B - Annual data provided for DT17B only
DT17B	325568	547874	а	9.9	9.4	6.7	9.1	5.3	5.6	3.9	8.2	а	10.5	12.1	8.1	6.3	-	Duplicate Site with DT17 and DT17B - Annual data provided for DT17B only
DT18	314286	541751	20.7	22.1	20.4	16.3	а	15.5	15.9	13.0	18.2	16.0	22.3	21.0	-	-	-	Duplicate Site with DT18 and DT18B - Annual data provided for DT18B only
DT18B	314286	541751	20.7	22.1	20.4	16.3	а	15.5	15.9	13.0	18.2	16.0	22.3	21.0	18.3	14.3	-	Duplicate Site with DT18 and DT18B - Annual data provided for DT18B only
DT19	311391	529810	8.2	9.1	7.7	5.2	5.3	4.0	4.2	3.9	6.2	8.2	5.9	12.0	-	-	-	Duplicate Site with DT19 and DT19B - Annual data provided for DT19B only
DT19B	311391	529810	8.2	9.1	7.7	5.2	5.3	4.0	4.2	3.9	6.2	8.2	5.9	12.0	6.7	5.2	-	Duplicate Site with DT19 and DT19B - Annual data provided for DT19B only
DT20	303720	536702	8.1	8.7	8.1	5.6	5.7	20.1	5.4	4.7	4.1	8.5	9.8	10.7	-	-	-	Duplicate Site with DT20 and DT20B - Annual data provided for DT20B only
DT20B	303720	536702	8.1	8.7	8.1	5.6	5.7	20.1	5.4	4.7	4.1	8.5	9.8	10.7	8.3	6.5	-	Duplicate Site with DT20 and DT20B - Annual data provided for DT20B only
N1	297305	518185	19.2	18.3	13.9	14.1	14.4	10.2	11.8	9.7	13.7	16.4	16.5	15.8	14.5	12.8	-	
N2	297515	518070	16.6	16.9	12.5	11.0	12.7	10.2	9.9	9.6	12.0	14.1	16.2	12.0	12.8	11.3	-	
N3	299020	517245	5.6	7.5	6.1	4.3	5.5	3.3	4.4	3.8	4.8	7.7	8.2	6.9	5.7	5.0	-	
N4	316725	480340	7.7	9.4	6.4	4.8	5.5	4.4	4.3	4.8	5.0	9.0	11.3	7.5	6.7	5.9	-	
N5	302260	514890	9.1	9.7	7.3	6.3	7.8	6.3	6.1	6.2	6.9	8.5	11.0	4.3	7.5	6.6	-	

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted CCC =0.84 ABC = 0.78 CBC = 0.88	Annual Mean: Distance Corrected to Nearest Exposure	Comment
N6	297230	518155	15.4	10.9	16.1	11.3	12.0	8.4	9.4	8.7	10.0	14.9	15.8	12.6	12.1	10.7	-	
N7	301095	510930	21.2	14.7	14.6	13.0	14.6	9.2	12.1	10.3	14.3	11.9	19.8	14.6	14.2	12.5	-	
N8	300895	510695	7.7	6.0	4.9	3.6	4.1	2.6	3.1	3.5	4.5	6.5	9.2	6.9	5.2	4.6	-	
N9	307000	515855	5.8	4.8	4.0	3.3	3.9	2.8	3.6	4.8	4.8	5.3	6.8	5.9	4.7	4.1	-	
N10	317310	479980	11.0	9.5	а	6.7	а	а	а	а	6.4	а	а	а	8.4	7.2	-	
N11	297320	518280	16.7	25.6	21.3	17.0	18.8	13.6	15.9	13.0	14.4	17.6	19.7	16.8	17.5	15.4	-	
N12	301225	508805	10.1	5.8	6.5	4.5	5.1	3.3	3.9	3.8	5.5	6.8	11.6	7.4	6.2	5.5	-	
N13	301975	506635	7.9	6.4	5.5	3.9	4.4	3.3	3.3	3.6	4.6	5.7	7.6	6.1	5.2	4.6	-	
N14	306695	503535	12.3	11.3	10.8	8.6	10.2	8.8	9.4	9.3	8.1	10.8	11.8	8.8	10.0	8.8	-	
N15	304440	501495	6.5	5.5	4.6	3.2	0.7	2.7	2.8	3.1	3.1	6.2	6.4	5.2	4.2	3.7	-	
N16	314410	505570	1.9	3.2	2.8	2.2	2.4	1.3	1.6	2.3	2.0	3.6	3.4	а	2.4	2.1	-	
N17	308235	499295	6.9	5.4	5.3	4.8	4.4	3.5	3.6	4.7	5.9	6.5	9.6	6.5	5.6	4.9	-	
N18	300590	523220	11.4	8.2	7.2	7.2	7.1	6.0	5.8	6.1	7.0	8.4	12.4	10.4	8.1	7.1	-	
N19	309345	489300	5.2	5.3	4.7	3.5	4.0	2.4	3.4	3.2	3.3	6.0	7.7	5.1	4.5	3.9	-	
N20	310735	488320	9.6	8.4	7.8	7.0	7.1	5.4	6.8	6.9	5.9	9.8	9.9	7.5	7.7	6.7	-	
N21	303995	502445	4.3	3.5	3.7	2.9	3.3	2.8	2.6	2.9	3.2	3.6	6.1	4.7	3.6	3.2	-	
N22	297440	517960	16.5	14.3	11.2	8.9	10.8	6.5	8.2	7.2	9.1	12.9	12.1	12.4	10.8	9.5	-	
N23	300885	523890	20.2	18.6	14.6	15.4	17.5	13.9	10.9	11.5	20.6	15.1	23.3	17.1	16.6	14.6	-	
N24	297260	518225	16.5	17.1	16.7	11.5	12.5	6.9	11.6	8.8	10.2	15.0	14.8	14.7	13.0	11.5	-	

[☑] All erroneous data has been removed from the NO₂ diffusion tube dataset presented in Table B.1.

[☑] Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.

- **I** Local bias adjustment factor used.
- **☒** National bias adjustment factor used.
- **☑** Where applicable, data has been distance corrected for relevant exposure in the final column.
- ☑ Cumberland Council confirm that all 2024 diffusion tube data has been uploaded to the Diffusion Tube Data Entry System.

Exceedances of the NO₂ annual mean objective of 40µg m⁻³ are shown in **bold**.

NO₂ annual means exceeding 60 µg m⁻³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**. See Appendix C for details on bias adjustment and annualisation.

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

New or Changed Sources Identified Within Cumberland Council During 2024

Cumberland Council has not identified any new sources relating to air quality within the reporting year of 2024.

Additional Air Quality Works Undertaken by Cumberland Council During 2024

Cumberland Council has not completed any additional works within the reporting year of 2024.

QA/QC of Diffusion Tube Monitoring

As discussed previously Cumberland Council replaced Cumbria County Council and the three local authorities: Carlisle City Council (CCC), Allerdale Borough Council (ABC) and Copeland Borough Council (CBC) on 1st April 2023. Each former local authority used a different combination of analytical laboratory or NO₂ absorbent for the analysis of the diffusion tubes. This section provides detail relating to the following aspects of non-automatic monitoring using diffusion tubes.

Diffusion tube supplier

The analytical laboratories and NO₂ absorbent used in 2024 are listed below:

Former local authority	Analytical laboratory	NO ₂ absorbent
Carlisle City Council	Gradko	20 % TEA in water
Allerdale Borough Council	Socotec	50% TEA in Acetone
Copeland Borough Council	Gradko	50% TEA in Acetone

Both analytical laboratories also participate in the AIR-PT analysis scheme¹⁰. This is an independent analytical proficiency-testing scheme, operated by LGC Standards and

¹⁰ LGC. Summary of Laboratory Performance in AIR NO2 Proficiency Testing Scheme (February 2023 – February 2025) at https://laqm.defra.gov.uk/wp-content/uploads/2025/04/AIR-PT-Rounds-55-to-68-January-2023-to-February-2025.pdf

supported by the Health and Safety Laboratory (HSL). Defra and the Devolved Administrations advise that diffusion tubes used for Local Air Quality management (LAQM) should be obtained from laboratories that have demonstrated satisfactory performance in the AIR NO₂ PT scheme. Results for recent analytical laboratory performance are summarised below:

AIR PT Round	AIR PT AR062	AIR PT AR063	AIR PT AR065	AIR PT AR066
Period	January – February 2024	April – June 2024	July-August 2024	September October 2024
Socotec UK Limited	100%	100%	100%	100%
Gradko International Ltd	100%	100%	100%	100%

For those reporting periods in 2024 for which Gradko and Socotec reported results all were considered satisfactory (based on z-scores less than or equal to 2).

Diffusion Tube Calendar

The diffusion tube calendar used is provided below:

Month	Tube On	Tube Off
Jan	03/01/2024	05/02/2024
Feb	05/02/2024	06/03/2024
Mar	06/03/2024	03/04/2024
Apr	03/04/2024	01/05/2024
May	01/05/2024	05/06/2024
Jun	05/06/2024	03/07/2024
Jul	03/07/2024	31/07/2024
Aug	31/07/2024	04/09/2024
Sep	04/09/2024	02/10/2024
Oct	02/10/2024	06/11/2024
Nov	06/11/2024	04/12/2024
Dec	04/12/2024	08/01/2024

Apart from the end date for the first sampling period and the start date for the next sample (5th February 2024 instead of 31st January 2024) the changeover dates are the same as the LAQM calendar. This slight deviation is very unlikely to significantly impact the estimate of annual means.

Diffusion Tube Annualisation

A total of eleven diffusion tubes required annualisation: four (B7, C2, C3 and H6) with the former area of Carlisle City Council, six (DT2, DT2B, D15, D15B, DT16 and DT16B) within the former area of Allerdale Borough Council and one with the former area of Copeland Borough Council. The annualisation factors and annualisation simple annual means are presented in Table C.1

Table C.1 – Annualisation Summary (concentrations presented in µg m⁻³)

Diffusion Tube ID	Annualisati on Factor Blackpool Marton	Annualisation Factor Newcastle Centre	Annualisation Factor Sunderland Silksworth	Average Annualisati on Factor	Raw Data Simple Annual Mean (µg m ⁻³)	Annualised Data Simple Annual Mean (µg m ⁻³)	Comments
В7	1.0705	1.0677	1.0412	1.0598	32.4	34.3	
C2	1.0984	1.0658	0.9959	1.0534	13.3	14.0	
C3	0.8043	0.8594	0.8982	0.8540	24.1	20.5	
H6	1.1048	1.0662	1.0795	1.0835	7.6	8.2	
DT2	1.1475	1.1019	1.0627	1.1040	-	-	Duplicate Site with DT2 and DT2B -
DT2B	1.1475	1.1019	1.0627	1.1040	26.0	28.7	Annual data provided for DT2B only
DT15	1.0124	1.0019	1.0136	1.0093	-	-	Duplicate Site with DT15 and DT15B -
DT15B	1.0124	1.0019	1.0136	1.0093	11.5	11.6	Annual data provided for DT15B only
DT16	0.9404	0.9208	0.9217	0.9276	-	-	Duplicate Site with DT16 and DT16B -
DT16B	0.9404	0.9208	0.9217	0.9276	11.9	11.1	Annual data provided for DT16B only
N10	0.9508	0.9895	0.9993		0.9799	8.4	8.2

Diffusion Tube Bias Adjustment Factors

The diffusion tube data presented within the 2024 ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG22 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO_x/NO₂ continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method.

Cumberland Council have applied the respective national bias adjustment factors of 0.84, 0.78 and 0.88 for the former areas of CCC, ABC and CBC to the monitoring data. A summary of bias adjustment factors used by Cumberland Council over the past five years is presented in Table C.2.

Screenshots of the respective adjustment spreadsheets are shown in Figure C.1, Figure C.2 and Figure C.3, respectively.

Table C.2 - Bias Adjustment Factor

Former local authority	Laboratory/Absorbent	Monitoring Year	Local or National	If National, Version of National Spreadsheet	Adjustment Factor
CCC	Gradko 20 % TEA in water	2024	National	04/25	0.84
CCC	Gradko 20 % TEA in water	2023	National	03/24	0.81
CCC	Gradko 20 % TEA in water	2022	National	03/23	0.83
CCC	Gradko 20 % TEA in water	2021	National	06/22	0.84
CCC	Gradko 20 % TEA in water	2020	National	06/21	0.81
ABC	Socotec 50% TEA in Acetone	2024	National	04/25	0.78
ABC	Socotec 50% TEA in Acetone	2023	National	03/24	0.77
ABC	Socotec 50% TEA in Acetone	2022	National	03/23	0.76
ABC	Socotec 50% TEA in Acetone	2021	National	03/22	0.78
ABC	Socotec 50% TEA in Acetone	2020	National	03/21	0.77
CBC	Gradko 50% TEA in Acetone	2024	National	04/25	0.88
CBC	Gradko 50% TEA in Acetone	2023	National	03/24	0.83

Former local authority	Laboratory/Absorbent	Monitoring Year	Local or National	If National, Version of National Spreadsheet	Adjustment Factor
CBC	Gradko 50% TEA in Acetone	2022	National	03/24 ¹¹	0.82
CBC	Gradko 50% TEA in Acetone	2021	National	03/24 ¹⁰	0.82
CBC	Gradko 50% TEA in Acetone	2020	National	03/21	0.82

Figure C.1 - National bias adjustment spreadsheet (former Carlisle City Council)

National Diffusion Tube	e l	3ias Adju	istmei	nt i	a	ctor Spreadsheet			Spreadsh	eet Ver	sion Numl	per: 04/25
follow the steps below in the correct ord										This	spreadshe	et will be
Data only apply to tubes exposed monthly a	nd a	are not suitable f	or correctir	a ind	lividu	ual short-term monitoring periods				updat	ted at the er	nd of June
Whenever presenting adjusted data, you sh											2025	
This spreadsheet will be updated every few							ourage thei	r immediate use	€.			
The LAQM Helpdesk is operated on behalf of E	lefra	and the Nevolve	d Administra	ations	: bu F	Bureau Veritas, in conjunction with	Spreadshe	et maintained l	ov the National	Physical	Laboratory	/ Original
contract partners AECOM and the National Ph			- 1 I I I I I I I I I I I I I I I I I I		,.	sarcaa remas, moonjanoson man		y Air Quality C		,	Lucoratory	· Original
Step 1:		Step 2:	Step 3:	$\overline{}$	_			Step 4:				
этер т.	\vdash	Select a	Select a	_	Uha	re there is only one study for a ch		_ <u></u>	chauld usa t	oo adiiy	stmont for	tor chown
Select the Laboratory that Analyses Your		Preparation.	Year from	. '		caution. Where there is more tha						
Tubes from the Drop-Down List		lethod from the	the Drop-		vitn	caution. Where there is more tha		ıy, use the ot nal column.	erall ractor	snown i	n blue at	the root of
		Dron-Down List	وتلمسمانه				the III	iai coidiiii.				
If a laboratory ir notzhown, we have no data for thir laboratory.	1	zhaun, uo havo na data	If a year ir no zhoun, ue have		- If	you have your own co-location study the						tir Quality
ir arabur atur, u nocenoun, uo navo no aacaror chu laboratory.		or thir mothed at thir laboratory.	data ²			Management Helpdesk a	at LAQMHelp	desk@bureauv	eritas.com or 08	00 0327	953	
Analysed By ¹		Method	Year ⁵				Length	Diffusion	Automatic			Dias
Allalysed by		anda quar artentina, akanar	Transcriptor		ite		of Study	Tube Mean	Monitor	Bias	Tube	Adjustme
	1	All feem the papers limb	steer [811]	7	yР	Local Authority	(months	Conc. (Dm)	Mean	(B)	Precisio	t Factor
T,		"T	,	T.	e)	(µg/m³)	Conc. (Cm)		n.	(A)
aradko	20:	4 TEA in water	2024	- L	UV	Belfast City Council	10	24	20	19.9%	G	0.83
aradko	20:	4 TEA in water	2024		R	Belfast City Council	12	43	34	28.8%	G	0.78
Rradko	20:	4 TEA in water	2024		R	Belfast City Council	12	24	21	13.9%	G	0.88
Gradko	20:	4 TEA in water	2024		R	Belfast City Council	12	34	27	25.5%	G	0.80
Gradko	_	4 TEA in water	2024	_	R	Blackburn With Darwen Bo	12	22	17	32.9%	G	0.75
Gradko		4 TEA in water	2024	_	R	Bath & North East Somerset	12	25	20	22.6%	G	0.82
Gradko		4 TEA in water	2024	_	R	Cambridge City Council	12	19	15	28.5%	G	0.78
Gradko	_	TEA in water	2024	_	_	Plymouth City Council	12	16	14	13.8%	G	0.88
aradko	_	TEA in water	2024	_	R	Plymouth City Council	12	31	23	33.4%	S	0.75
Gradko Gradko	_	4 TEA in water	2024 2024	_	R KS	Monmouthshire County Council	12	29 41	24 36	19.4%	G	0.84 0.86
aradko Gradko	-	TEA in water	2024	_	R B	Marylebone Road Intercomparison Lisburn & Castlereagh City Council	12	24	19	27.8%	G	0.86
aradko Aradko	-	TEA in water	2024	-	B	Ards And North Down Borough Council	11	28	20	44.5%	G	0.69
aradko Aradko	-	TEA in water	2024	_	B	Eastleigh Borough Council	12	29	24	20.3%	G	0.83
aradko Aradko	-	4 TEA in water	2024	_	UB	Eastleigh Borough Council	12	19	17	12.4%	G	0.89
aradko		4 TEA in water	2024	_	R	Eastleigh Borough Council	12	19	17	12.0%	G	0.89
iradko	20:	4 TEA in water	2024		R	Gateshead Council	12	20	18	13.9%	G	0.88
aradko	20:	4 TEA in water	2024	\perp	R	Gateshead Council	11	20	17	19.7%	G	0.84
aradko	20:	4 TEA in water	2024		R	Gateshead Council	12	24	20	21.7%	G	0.82
ìradko	20:	4 TEA in water	2024	_	R	Gateshead Council	12	27	23	19.0%	G	0.84
iradko	-	4 TEA in water	2024	_	R	Gateshead Council	12	28	30	6.0%	G	1.06
iradko	-	4 TEA in water	2024	_	R	Brighton & Hove City Council	11	34	27	26.3%	G	0.79
ìradko	-	4 TEA in water	2024	_	R.	Liverpool City Council	12	34	25	35.7%	G	0.74
iradko		4 TEA in water	2024	_	KS	Liverpool City Council	10	52	47	10.2%	G	0.91
aradko		TEA in water	2024	_	R	Nottingham City Council	10	29	26	12.2%	G	0.89
aradko aradko		4 TEA in water 4 TEA in water	2024 2024	_	R R	Wychavon District Council Worcestershire	10 12	29 12	26 12	14.7% -3.4%	G	0.87
												1.04

¹¹ The annual averages for Copeland Borough Council for the data years 2021 and 2022 were first calculated in the 2024 ASR report using national adjustment factors obtained from the national adjustment factor spreadsheet 03/24.

Figure C.2 - National bias adjustment spreadsheet (former Allerdale Borough Council)

National Diffusion Tub	e E	Bias Adju	ıstmen	t Fa	ctor Spreadsheet			Spreadshe	et Ver	sion Numl	oer: 04/25
Follow the steps below in the correct or									Thi	s spreadshe	eet will be
Data only apply to tubes exposed monthly a										ted at the e	
Whenever presenting adjusted data, you sl			_							2025	
This spreadsheet will be updated every few						urage their i	immediate use.				
The LAQM Helpdesk is operated on behalf of D	lefra a	and the Devolved				Spreadsh	eet maintained		l Physic	al Laborato	ry. Original
partners AECOM and the National Physical Lab	orato	-					oy Air Quality C	onsultants Ltd.			
Step 1:	╙	Step 2:	Step 3: Select a Year				Step 4:				
Select the Laboratory that Analyses Your Tubes from the Drop-Down List	M	ect a Preparation lethod from the Irop-Down List	from the Drop-Down		ere there is only one study for a ch h caution. Where there is more than	n one stud					
lf a laboratory ir notzhoun, we have no data for thir laboratory.	natri	roparation mothod ir hown, wo havo no data r thir mothod at thir laboratory.	If a year is not shown, we have no 2 data	lf you	have your own co-location study then see f Helpdesk at LAQI			om or 0800 032		al Air Quality	
Analysed By ¹	1	Method	Year ⁵	Site Typ e	Local Authority	Length of Study (months	Diffusion Tube Mean Conc. (Dm)	Monitor Mean Conc. (Cm)	Bias (B)	Tube Precisio	Blas Adjustmer t Factor (A)
				_		J	(µg/m³)	(alm ²)			(Cm/Dm)
SOCOTEC Didcot		TEA in acetone	2024	R	Cambridge City Council	11	20	15	31.0%	G	0.76
SOCOTEC Didcot	+-	TEA in acetone	2024	R	Cardiff Council / Shared Regulatory Services	9	35	31	14.2%	G	0.88
SOCOTEC Didcot	_	TEA in acetone	2024	R	Ipswich Borough Council	9	24	20	21.0%	G	0.83
SOCOTEC Didcot	+-	TEA in acetone	2024	R	Ipswich Borough Council	11	36	26	37.9%	G	0.73
SOCOTEC Didcot	+-	TEA in acetone	2024	UB	City Of York Council	11	13	11	16.0%	P	0.86
SOCOTEC Didcot	_	TEA in acetone	2024	R	City Of York Council	11	22	18	22.9%	G	0.81
SOCOTEC Didcot	-	TEA in acetone	2024	R	City Of York Council	11	26	20	31.0%	G	0.76
SOCOTEC Didcot	+-	TEA in acetone	2024	R	East Suffolk Council	9	26	20	32.8%	G	0.75
SOCOTEC Didcot	_	TEA in acetone	2024	KS	Marylebone Road Intercomparison	10	47	36	30.5%	G	0.77
SOCOTEC Didcot	1000	TEA in acetone	2024	UB	Hull City Council	10	21	16	25.4%	P	0.80
SOCOTEC Didcot	+	TEA in acetone	2024	R	Hull City Council	9	27	20	35.3%	G	0.74
SOCOTEC Didcot	_	TEA in acetone	2024	R	Waverley Borough Council	10	21	18	13.7%	G	0.88
SOCOTEC Didcot		TEA in acetone	2024	R	Waverley Borough Council	11	22	16	32.3%	G	0.76
SOCOTEC Didcot		TEA in acetone	2024	R	Wrexham County Borough Council	10	15	13	17.0%	G	0.85
SOCOTEC Didcot	_	TEA in acetone	2024	UB	Gravesham Borough Council	11	21	19	9.7%	P	0.91
SOCOTEC Didcot	1	TEA in acetone	2024	R	Slough Borough Council	11	35	24	43.5%	G	0.70
SOCOTEC Didcot		TEA in acetone	2024	R	Slough Borough Council	11	26	20	32.6%	G	0.75
SOCOTEC Didcot	-	TEA in acetone	2024	R	Slough Borough Council	11	23	17	34.0%	G	0.75
SOCOTEC Didcot	+-	TEA in acetone	2024	R	Slough Borough Council	10	31	23	33.4%	G	0.75
SOCOTEC Didcot		TEA in acetone	2024	R	Slough Borough Council	11	30	23	33.7%	G	0.75
SOCOTEC Didcot		TEA in acetone	2024	R	Thanet Distric Council	10	19	15	24.3%	G	0.80
SOCOTEC Didcot	+-	TEA in acetone	2024	UB	Wirral Council	9	14	12	19.9%	G	0.83
SOCOTEC Didcot	+-	TEA in acetone	2024	R	Derry City And Strabane District Council	11	28	32	-11.8%	G	1.13
SOCOTEC Didcot		TEA in acetone	2024	UB	Derry City And Strabane District Council	11	11	7	58.1%	G	0.63
SOCOTEC Didcot	+-	TEA in Acetone	2024	R	Horsham District Council	11	22	17	31.1%	G	0.76
SOCOTEC Didcot	-	TEA in Acetone	2024	R	Leeds City Council	10	36	28	32.5%	G	0.75
SOCOTEC Didcot		TEA in Acetone	2024	KS	Leeds City Council	11	29	20	42.7%	G	0.70
SOCOTEC Didcot	-	TEA in Acetone	2024	R	Leeds City Council	11	24	18	36.4%	G	0.73
SOCOTEC Didcot	_	TEA in Acetone	2024	UC	Leeds City Council	10	25	19	31.2%	G	0.76
SOCOTEC Didcot	+-	TEA in Acetone	2024	R	Huntingdonshire District Council	10	28	23	21.1%	G	0.83
SOCOTEC Didcot	_	TEA in Acetone	2024	R	North East Lincolnshire Council	11	39	21	84.1%	G	0.54
SOCOTEC Didcot	+-	TEA in Acetone	2024	UB	North East Lincolnshire Council	10	12	10	20.0%	G	0.83
SOCOTEC Didcot	50%	TEA in Acetone	2024	R	North East Lincolnshire Council	11	21	18	15.7%	G	0.86
SOCOTEC Didcot	50%	TEA in acetone	2024		Overall Factor (33 studies)					Use	0.78

Figure C.3 - National bias adjustment spreadsheet (former Copeland Council)

National Diffusion Tube Bias Adjustment Factor Spreadsheet					Spreadsheet Version Number: 04/25					
Follow the steps below in the correct order to show the results of <u>relevant</u> co-location studies					This spreadsheet will be					
Data only apply to tubes exposed monthly a	Data only apply to tubes exposed monthly and are not suitable for correcting individual short-term monitoring periods				updated at the end of June					
Whenever presenting adjusted data, you should state the adjustment factor used and the version of the spreadsheet				2025						
This spreadsheet will be updated every few months: the factors may therefore be subject to change. This should not discourage their immediate use.					LAQM Helpdesk Website					
			Spreadsheet maintained by the National Physical Laboratory. Original compiled by Air Quality Consultants Ltd.							
Step 1:	Step 2:	o 2: Step 3: Step 4:								
Select the Laboratory that Analyses Your Tubes from the Drop-Down List	Select a Preparation Method from the Drop-Down List	where there is only one study use the overall factor about use the distinct in the pro-				with caution.				
If a laboratory is not shown, we have no data for this laboratory.	If a preparation method is not shown, we have no data or this method at this laboratory.	If a year is not shown, we have no data. If you have your own co-location study then see footnote. If uncertain what to do then contact the Local Air Quality Management Helpdesk at LAQMHelpdesk@bureauveritas.com or 0800 0327953								
Analysed By ¹	Method Tay ida yaurzelection, chaare SII) from the pap-up list	Year To undo your relection, choose (All)	Site Type	Local Authority	Length of Study (months)	Diffusion Tube Mean Conc. (Dm) (μg/m³)	Automatic Monitor Mean Conc. (Cm) (μg/m³)	Bias (B)	Tube Precision	Bias Adjustment Factor (A) (Cm/Dm)
Gradko	50% TEA in Acetone	2024	UB	City Of London Corporation	10	26	21	26.8%	G	0.79
Gradko	50% TEA in Acetone	2024	R	City Of London Corporation	12	34	30	12.1%	G	0.89
Gradko	50% TEA in Acetone	2024	UB	Falkirk Council	11	13	13	-1.6%	G	1.02
Gradko	50% TEA in acetone	2024	SU	Redcar And Cleveland Borough Council	12	12	9	35.4%	G	0.74
Gradko	50% TEA in acetone	2024	KS	Marylebone Road Intercomparison	11	43	36	20.8%	G	0.83
Gradko	50% TEA in acetone	2024	R	Sandwell Mbc	12	30	25	24.2%	G	0.81
			UB	Sandwell Mbc	12	19	l 17 I	8.0%	G	0.93
Gradko	50% TEA in acetone	2024								
Gradko	50% TEA in acetone	2024	R	Sandwell Mbc	12	20	20	-2.6%	S	1.03
Gradko Gradko	50% TEA in acetone 50% TEA in Acetone	2024 2024	R R	Sandwell Mbc London Borough Of Merton	12 12	20 27	20 22	-2.6% 25.7%	S	0.80
Gradko Gradko Gradko	50% TEA in acetone 50% TEA in Acetone 50% TEA in acetone	2024 2024 2024	R R UB	Sandwell Mbc London Borough Of Merton London Borough Of Wandsworth	12 12 10	20 27 19	20 22 14	-2.6% 25.7% 31.7%	S G	0.80 0.76
Gradko Gradko Gradko Gradko	50% TEA in acetone 50% TEA in Acetone 50% TEA in acetone 50% TEA in acetone	2024 2024 2024 2024 2024	R R UB	Sandwell Mbc London Borough Of Merton London Borough Of Wandsworth London Borough Of Richmond Upon Thames	12 12 10 12	20 27 19 18	20 22 14 19	-2.6% 25.7% 31.7% -9.1%	0 0	0.80 0.76 1.10
Gradko Gradko Gradko	50% TEA in acetone 50% TEA in Acetone 50% TEA in acetone	2024 2024 2024	R R UB	Sandwell Mbc London Borough Of Merton London Borough Of Wandsworth	12 12 10 12	20 27 19	20 22 14	-2.6% 25.7% 31.7%	S G	0.80 0.76

Local Bias Adjustment

A local bias adjustment factor of 0.78 was derived for the collocated triplicate tubes and the automatic analyser at Morton Community Centre. The bias adjustment was carried out using the NO₂ data processing tool¹² and the summary statistics are provided in Table C.3.

Table C.3 - Local Bias Adjustment Calculation

	Local Bias Adjustment Input 1
Periods used to calculate bias	11
Bias Factor A	0.78 (0.74 - 0.83)
Bias Factor B	28% (21% - 35%)
Diffusion Tube Mean (µg m ⁻³)	11.4
Mean CV (Precision)	5.7%
Automatic Mean (µg m ⁻³)	8.9
Data Capture	97%
Adjusted Tube Mean (µg m ⁻³)	9 (8 - 9)

Selection of Appropriate Bias Adjustment Factor

Morton Community Centre is the only location in Cumberland Council where a local bias adjustment factor is calculated. For 2024 the collocated bias adjusted value was calculated to be 0.78 and is less than the value obtained for the national bias adjustment factor (0.84). The national bias adjustment has been chosen so that the bias adjusted NO₂ tends to be conservative. This is in line with all previous ASRs carried out for the former Carlisle City Council.

NO₂ Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tool/NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO₂ concentrations corrected for distance are presented in Table B.1.

No diffusion tube measurements required distance correction during 2024.

¹² Diffusion tube data processing tool lagm (defra.gov.uk)

QA/QC of Automatic Monitoring

Ricardo provides data management and local site operator (LSO) duties for the automatic monitoring sites within Carlisle. The instrumentation is calibrated every two weeks and a full site service is carried out every six months. The QA/QC is accredited to ISO 17025. All data are ratified to all LAQM reporting requirements. Measurement data are available through UKAIR.

PM₁₀ and PM_{2.5} Monitoring Adjustment

PM₁₀ and PM_{2.5} are measured using BAM 1020 heated instrument. For the PM₁₀ instrument a slope correction factor of 0.9662 is applied. No slope correction is required for the PM_{2.5}.

Automatic Monitoring Annualisation

As the data capture for the NO_2 and PM_{10} measured at Morton Community Centre was greater than 85 % no annual was required for these pollutants. However, annualisation was required for $PM_{2.5}$ because the data capture was 65.8 %. The summary statistics are presented in Table C.4¹³. The annualisation did not result in a change in the annual meanthe concentration remained at 7.6 μ g m⁻³.

Table C.4 – Automatic PM_{2.5} Annualisation Summary (concentrations presented in µg m⁻³)

			ммсс			
Background Site	Annual Data Capture	Annual Mean (A _m)	Period Mean (P _m)	Ratio (A _m /P _m)		
Blackpool Marton	100.0	7.5	7.5	0.999		
Newcastle Centre	100.0	6.9	7.0	0.998		
Sunderland Silksworth	100.0	6.7	6.7	0.998		
Aver	0.998					
Raw Data Ai	7.6					
Annualised Anı	7.6					

_

¹³ The annualisation was carried out using the Automatic Data Processing Tool | LAQM

NO₂ Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, automatic annual mean NO₂ concentrations corrected for distance are presented in Table A.3.

No automatic NO₂ monitoring locations required distance correction during 2024.

Appendix D: Map(s) of Monitoring Locations and AQMAs

Figure D.1 - Map of Non-Automatic Monitoring Site- overview

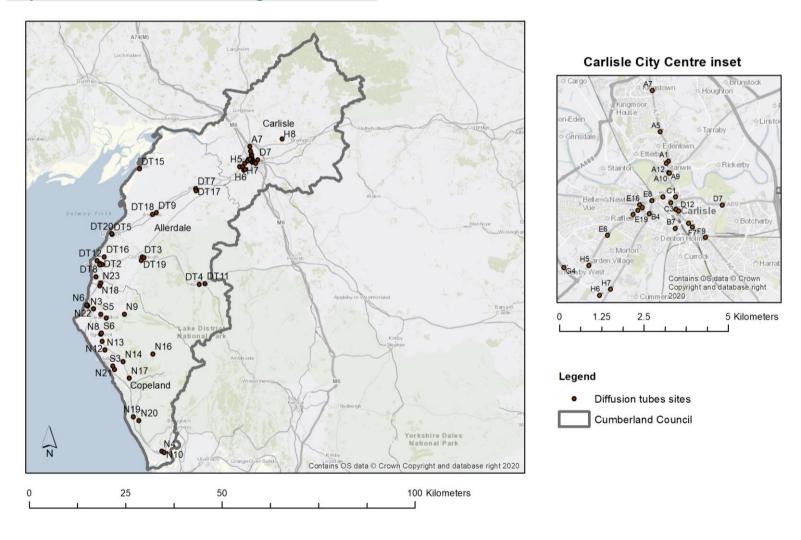
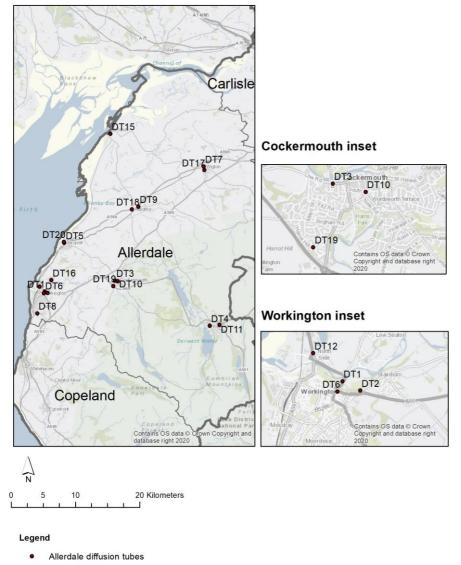


Figure D.2 - Location of diffusion tubes within Cumberland Council (Carlisle Area)

Key to site codes

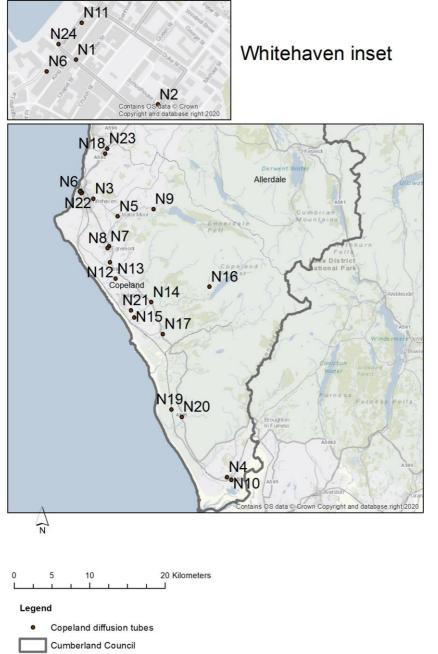
45 SCOTLAND RD A10 STANWIX BANK A12 STANWIX BANK CAR PARK Α5 37 KINGSTOWN RD 282 KINGSTOWN RD Α7 BRAMPTON RD Δ9 В4 DALSTON RD 12 CURROCK ST C1 LOWTHER ST C2 TOURIST INFO **DEVONSHIRE ST** D12 POST OFFICE 282 WARWICK RD D7 FINKLE ST E22 E12 3 WIGTON RD 22 WIGTON RD E15 E16 JOVIAL SAILOR E19 49 WIGTON RD MORTON MANOR 1 E8 BRIDGE ST 155 BOTCHERGATE F10 24 LONDON RD F7 129 LONDON RD F9 THE HOBBIT G4 WIGTON RD Н5 PETER LANE Н6 DALSTON RD AIRPORT


Legend

- Morton Manor Community Centre
- Diffusion tube

Figure D.3 - Location of diffusion tubes within Cumberland Council (in outlying areas of former CCC)

Figure D.4 - Location of diffusion tubes within Cumberland Council (Allerdale)



Key to site codes

Hall Park View, Workington DT2 Murray Road, Workington DT3 Crown Street, Cockermouth DT4 Main Street, Keswick DT5 Curzon Street, Maryport Ramsay Brow, Workington DT7 King Street, Wigton DT8 Main Road, High Harrington DT9 Lawson Street, Aspatria DT10 South Street, Cockermouth Penrith Road, Keswick DT12 Northside Primary School, Northside DT15 Eden Street Silloth DT16 Main Road Seaton DT17 South End Street Wigton DT18 West Street Aspatria DT19 Marvejols Park Cockermouth DT20 Eaglesfield Street Marypont

Cumberland Council

Figure D.5 - Location of diffusion tubes within Cumberland Council (Copeland)

Key to site codes

55/56 Lowther St, Whitehaven N2 Police Station, Scotch St, Whitehaven N3 Fire Station, Hensingham N4 116 Holborn Hill, Millom Aldby Grove, Cleator Moor N6 White House, Strand St, Whitehaven Tourist Info, Main St, Egremont N8 Presbytery, St Bridgets Ln, Egremont N9 Primary School, Ennerdale Bridge N10 Council Centre, St Georges Rd, Millom N11 Opp JPJ, Strand St, Whitehaven N12 2 The Crescent, Thornhill N13 4 Holyoak, Beckermet N14 The Globe, The Square, Gosforth N15 21 Scafell Close, Seascale N16 Greendale Guest House, Wasdale N17 Holmrook Service Station, Holmrook N18 98 Main St, Distington N19 Railway Station, Bootle N20 King's Head, Bootle N21 Nr Seascale Hall Farm, Seascale Trinity Court, Scotch St, Whitehaven N23 2a Main St, Distington New Lowther St, Whitehaven

Figure D.6 - Location of air quality management areas and diffusion tubes

Figure D.7 - Location of air quality management areas (zoomed in)

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England¹⁴

Pollutant	Air Quality Objective: Concentration	Air Quality Objective: Measured as
Nitrogen Dioxide (NO ₂)	200μg m ⁻³ not to be exceeded more than 18 times a year	1-hour mean
Nitrogen Dioxide (NO ₂)	40 μg m ⁻³	Annual mean
Particulate Matter (PM ₁₀)	50 μg m ⁻³ , not to be exceeded more than 35 times a year	24-hour mean
Particulate Matter (PM ₁₀)	40 μg m ⁻³	Annual mean
Sulphur Dioxide (SO ₂)	350 μg m ⁻³ , not to be exceeded more than 24 times a year	1-hour mean
Sulphur Dioxide (SO ₂)	125 μg m ⁻³ , not to be exceeded more than 3 times a year	24-hour mean
Sulphur Dioxide (SO ₂)	266 μg m ⁻³ , not to be exceeded more than 35 times a year	15-minute mean

-

¹⁴ The units are in microgrammes of pollutant per cubic metre of air (µg m⁻³).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
ASR	Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide

References

- Local Air Quality Management Technical Guidance LAQM.TG22. August 2022.
 Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG22. August 2022.
 Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Chemical hazards and poisons report: Issue 28. June 2022. Published by UK Health Security Agency
- Air Quality Strategy Framework for Local Authority Delivery. August 2023.
 Published by Defra.